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Similarity solution for the problem of hydrodynamic dispersion and radiation in non- Darcy 
mixed convection heat and mass transfer from vertical surface embedded in porous media is 
presented. The Forchheimer extension is considered in the governing equations. The heat and 
mass transfer in the boundary layer region for aiding and opposing buoyancies in both flows 
has been analyzed. The Rosseland approximation is used to describe the radiative heat flux 
in the energy equation. The dimensionless velocity, temperature and concentration fields in 
the non-Darcy porous media are governed by complex interactions among the diffusion rate, 
buoyancy ratio and radiation parameter in addition to the flow driving parameter. Numerical 
results for details of the dimensionless velocity, temperature and concentration which shown 
on graphs and tables have been presented and compared against previously published work on 
special cases of the problem and found to be in excellent agreement. The combined effects of 
radiation, thermal dispersion and solutal diffusivity, for the non-Darcy porous medium, on the 
dimensionless velocity and heat and mass coefficients are discussed.      
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1. Introduction 
        Thermal and solutal transport by fluid 

flowing through a porous matrix is a 

phenomenon of great interest from both the 

theory and application point of view. The 

flow phenomenon is relatively complex 

rather than that of the pure thermal 

convection process. Heat and mass transfer 

processes in porous media are often 

encountered in the study of dynamics hot 

and salty springs of a sea, and in the 

chemical industry, in reservoir engineering 

about thermal recovery process. 

Underground spreading of chemical wastes 

and other pollutants, grain storage, 

evaporation cooling, and solidification are 

the few other application areas where the 

combined thermo-solutal mixed convection 

in porous media are observed. 

Combined heat and mass transfer by free 

convection under boundary layer 

approximations has been studied by Bejan 

and Khair [1] and Murthy and Singh [2]. 

Mixed convection boundary layer flow on a 

surface in a saturated porous medium was 

studied by Merkin [3]. Coupled heat and 

mass transfer by mixed convection in 

Darcian fluid-saturated porous medium has 
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been analyzed by Lai [4]. Thermal 

dispersion effects have been studied by Lai 

and Kulacki [5], Amiri and Vafai [6] and 

Murthy and Singh [7]. Coupled heat and 

mass transfer phenomenon in non-Darcy 

flows are studied by Karimi-Fard et al. [8] 

and Murthy and Singh [2]. The effect of 

solutal and thermal dispersion effects in 

homogeneous and isotropic Darcian porous 

media has been analyzed by Dagan [9]. A 

systematic derivation of the governing 

equations with various types of 

approximations used in applications has 

been presented. Using scale analysis 

arguments, Telles, and Trevisan [10] 

analyzed the double dispersion phenomenon 

in a free convection boundary layer adjacent 

to a vertical wall in a Darcian fluid-saturated 

porous medium. Murthy and Singh [11] 

studied the convective heat transfer in non-

Darcy porous media. The effect of double 

dispersion on mixed convection heat and 

mass transfer in non-Darcy porous medium 

has been analyzed under boundary layer 

approximations using the similarity solution 

technique by Murthy [12]. Mansour and El-

Amin [13] studied the thermal dispersion 

effects on non-Darcy axisymmetric free 

convection in a saturated porous medium. 

Double dispersion effects on natural 

convection heat and mass transfer in non-

Darcy porous medium studied by El-Amin 

[14]. 

At high temperature, thermal radiation 

can significantly affect the heat transfer and 

the temperature distribution in the boundary 

layer flow of participating fluid. Hossain 

and Takhar [15] studied the effects of 

thermal radiation on mixed convection along 

a vertical plate subjected to uniform surface 

temperature. The problem of steady two-

dimensional free convection flow through a 

very porous medium bounded by a vertical 

infinite porous plate by the presence of 

thermal radiation was considered by Raptis 

[16]. The problem of thermal dispersion-

radiation effects on non-Darcy natural 

convection in a fluid saturated porous 

medium studied by Mohammadien and El-

Amin [17]. Thermal radiation effect on non-

Darcy natural convection with lateral mass 

transfer investigated by El-Hakiem and El-

Amin [18]. El-Hakiem [19] studied radiative 

effects on non-Darcy natural convection 

from a heated vertical plate in saturated 

porous media with mass transfer for non-

Newtonian fluid. Heat and mass transfer by 

non-Darcy free convection from a vertical 

cylinder embedded in porous media with a 

temperature   dependent viscosity 

investigated by Chamkha, et al.  [20]. Effect 

of rotation on thermal convection in an 

anisotropic porous medium with temperature 

dependent viscosity was studied by 

Vanishree [21]. El-Hakiem et al. [22] 

studied Natural convection boundary layer 

of non-Newtonian fluid about a permeable 

vertical Cone embedded in porous medium 

saturated with a nanofluid. Chamkha, A.J., 

et.al. [23] studied Coupled heat and mass 

transfer by MHD free convection flow along 

a vertical plate with streamwise temperature 

and species concentration variations. Nield 

and Bejan [24] explained about convective 
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heat transfer in porous medium in their 

book. Kairi and Murthy [25] investigated the 

effect of double dispersion on mixed 

convection heat and mass transfer in a non-

Newtonian fluid-saturated non-Darcy porous 

medium. Srinivasacharya, D., et. al. [26] 

studied mixed convection heat and mass 

transfer along a vertical plate embedded in a 

power-law fluid saturated Darcy porous 

medium with chemical reaction and 

radiation effects. 

 The present work, investigates the effects 

of double dispersion-radiation on mixed 

convection heat and mass transfer in non-

Darcy porous medium. The Forchheimer 

flow model is considered and the porous 

medium porosity is assumed to be low so 

that the boundary effects in the medium may 

be neglected. The heat and mass transfer in 

the boundary layer region has analyzed for 

aiding and opposing buoyancies for both 

aiding and opposing flows. The 

dimensionless velocity, temperature and 

concentration fields in non-Darcy porous 

media are observed to be governed by 

complex interactions among the diffusions 

rate Le, buoyancy ratio N , 
γ

Pe  and 
ξ

Pe  

the dispersion thermal and solutal diffusivity 

parameters respectively and radiation 

parameter R . The Rosseland approximation 

is used to describe the radiative heat flux in 

the energy equation. 

2. Analysis 

Mixed convection heat and mass transfer 

from the impermeable vertical flat wall in a 

fluid-saturated porous medium is considered 

for the study. The x -axis is taken along the 

plate and the y -coordinate normal to it. The 

wall is maintained at constant temperature 

and concentration, 
w

T  and 
w

C  respectively, 

and these values are assumed to be greater 

than the ambient temperature and 

concentration 
∞

T  and 
∞

C  respectively. The 

gravitational acceleration g is in a direction 

opposite to x -direction. The radiative heat 

flux in the x -direction is consider negligible 
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3. Results and Discussion 
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NAG software (D02HAFE routine) is used 

for integrating the corresponding first-order 

system of equations and shooting and 

matching the initial and boundary 

conditions. The step size 05.0=ηΔ  is used 

while obtaining the numerical solution with 

12
max

=η  and five –decimal accuracy as the 

criterion for convergence. Extensive 

calculations have been performed to obtain 

the flow, temperature and concentration 

fields for a wide range of parameter 

100Pe/Ra0 ≤≤ , 0.10 ≤≤ R , 0.1PeF
0

= , 

,5.0N −=  1.0, ,100Le1.0 ≤≤  01.0C
T

= , 

,5Pe0 ≤≤
γ

 and .5Pe0 ≤≤
ξ

 With ,0R =  

,0PeF
0

=  (Darcian  case), 0Pe =

γ

 and 

0Pe =

ξ
 the present problem reduces to heat 

and mass transfer by Darcian mixed 

convection in porous media analyzed by Lia 

[4], and for  0.1PeF
0

=  with variation of 

another parameter compared with Murthy 

(2000). 

          Aiding flow: when buoyancy is aiding 

the flow, for 0N >  (aiding buoyancy case) 

the tangential velocity evolves from nonzero 

wall velocity to uniform freestream velocity 

for all values of 0N > . The vertical 

component of velocity attains negative 

values near the wall and well inside the 

boundary layer. 

 
 
 
 

Table I: Values for 
(0)f ′

 and 
)0(θ ′−

 for varying PeRa / , 
γ

Pe
 

with 
0=

ξ
Pe

, 1=Le       

                Murthy 

(2000) 

                 Present work 

Pe

Ra

 

)0(f′
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γ
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1=
γ
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γ

Pe

 

1=
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5=
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0.564

21 

0.592

24 

0.679

33 

0.758

03 

0.870

62 

1.076

84 

0.398

95 

0.402

79 

0.418

84 

0.434

84 

0.456

27 

0.487

84 

0.230

44 

0.230

68 

0.235

64 

0.240

77 

0.246

88 

0.254

47 

1.0 

1.1583

1 

1.6794

4 

2.1925
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3.0 

4.7201
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0.564
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23 

0.679

30 
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04 
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1.076

81 

0.398

94 

0.402

77 

0.418

81 

0.434

81 

0.456

22 

0.487

82 

0.23045 

0.23066 

0.23559 

0.24072 

0.24678 

0.25442 

Table (II): Variation of )0(θ ′−  for varying of R ,
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γ
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6 
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0.5641
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0 
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3 

0.9617

1 

1.2030
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4 
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0.4510
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0.3819

2 
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3 

0.4501

2 

0.4889
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5 
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NAG software (D02HAFE routine) is used 

for integrating the corresponding first-order 

system of equations and shooting and 

matching the initial and boundary 

conditions. The step size 05.0=ηΔ  is used 

while obtaining the numerical solution with 

12
max

=η  and five –decimal accuracy as the 

criterion for convergence. Extensive 

calculations have been performed to obtain 

the flow, temperature and concentration 

fields for a wide range of parameter 

100Pe/Ra0 ≤≤ , 0.10 ≤≤ R , 0.1PeF
0

= , 

,5.0N −=  1.0, ,100Le1.0 ≤≤  01.0C
T

= , 

,5Pe0 ≤≤
γ

 and .5Pe0 ≤≤
ξ

 With ,0R =  

,0PeF
0

=  (Darcian  case), 0Pe =

γ

 and 

0Pe =

ξ
 the present problem reduces to heat 

and mass transfer by Darcian mixed 

convection in porous media analyzed by Lia 

[4], and for  0.1PeF
0

=  with variation of 

another parameter compared with Murthy 

(2000). 

          Aiding flow: when buoyancy is aiding 

the flow, for 0N >  (aiding buoyancy case) 

the tangential velocity evolves from nonzero 

wall velocity to uniform freestream velocity 

for all values of 0N > . The vertical 

component of velocity attains negative 

values near the wall and well inside the 

boundary layer. 
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Table (II): Variation of )0(θ ′−  for varying of R ,

PeRa / , 
γ

Pe  and Le  with 0=
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Pe , 5.0−=N  
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0.3056

 Author name / Journal of Engineering and Applied Sciences 00 (00) 000–000 7 
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10 

20 

50 

44 

2.192
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4.720

14 
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0.3536

2 
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0.4069

3 
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0.2233
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0.2307

9 

0.2390

7 
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3 

0.4892

1 

0.5589

6 
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2 

0.8184

3 

0.3819

2 

0.4144
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2 
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1 
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8 
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1.0 

5.0 

10 

20 

50 

1.0 

1.158

31 

1.679

44 
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58 

3.0 

4.720

14 

0.2925

1 

0.3103

0 

0.3636

6 

0.4103

1 

0.4753

9 

0.5921

1 

0.2654

1 

0.2766

6 

0.3094

2 

0.3361

5 

0.3694

3 

0.4178

1 

0.1955

2 

0.1997

9 

0.2125

0 

0.2228

3 

0.2319

4 

0.2441

1 

0.2925

1 

0.3170

1 

0.3851

7 

0.4337

9 
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3 

0.6572

1 

0.2654

1 

0.2843

2 

0.3325

4 

0.3599

9 

0.4015

3 

0.4539

1 
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2 

0.2049

0 
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0 

0.2418

6 

0.2731

1 

0.2965

5 

 

The wall temperature gradient values for 

0.1
0

=PeF  for two values of 5.0−=N  and 

0.1=N  are presented in Tables (II-III). The 

value of )0(f ′  is independent on R . From 

these tables, it is clear that )0(f ′  depends 

on the buoyancy ratioN . The variation of 

the heat transfer coefficient with PeRa /  for 

nonzero values of 
γ

Pe  is studied for a wide 

range of values of .Le  The effect of thermal 

dispersion on the heat transfer is studied 

keeping 0=

ξ
Pe . Consistent with the results 

presented in Lai and Kulacki (1991b), the 

value of )0(θ ′−  decreases as the thermal 

dispersion coefficient 
γ

Pe  increases.  

Table (III): Variation of )0(θ ′−  for varying of R , 

PeRa / , 
γ

Pe  and Le  with 0=

ξ
Pe , 0.1=N . 
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99 
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00 
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87 
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9 
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7 

0.8705

5 

1.0202

8 

1.2097

4 

1.5268

0 

0.398

94 

0.389

33 

0.377

42 

0.371

72 

0.366

03 

0.358

83 

0.2304

5 

0.1984

5 

0.1694

4 

0.1608

0 

0.1550

5 

0.1505

4 

0.564

19 

0.637

66 

0.808

33 

0.867

51 

0.997

57 

1.116

89 

0.398

94 

0.370

46 

0.340

66 

0.335

79 

0.324

37 

0.313

86 

0.230

45 

0.189

99 

0.157

02 
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95 
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66 
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73 
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5 

0.4397

8 

0.5350

0 

0.6803

3 

0.8067

6 

1.0182

6 

0.315

73 

0.323

16 

0.333

88 

0.338

07 

0.340

92 

0.342

41 

0.2112

5 

0.1871

3 

0.1641

9 

0.1572

4 

0.1526

4 

0.1490

9 

0.375

35 

0.424

71 

0.539

58 

0.641

85 

0.787

93 

0.999

85 

0.315

73 

0.308

25 

0.302

97 

0.284

43 

0.269

77 

0.253

18 

0.211

25 

0.179

40 

0.152

47 
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16 
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79 
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53 
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0 

0.7936
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20 
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82 

0.1955

2 
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9 

0.1593

4 

0.1538

8 

0.1503

3 

0.1476

8 
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51 

0.331

07 

0.421

12 

0.400

53 

0.388

39 

0.368

75 

0.265

41 

0.267

06 

0.267

06 

0.274

55 

0.253

11 

0.233

79 

0.195

52 

0.170

19 

0.148

24 

0.137

22 

0.130

19 

0.127

31 

 

Also for large 
γ

Pe , in a very small region 

near the wall, temperature gradient is greatly 

increased and as a result heat transfer is 

greatly enhanced due to thermal dispersion. 

The value of )0(θ ′−  decreases as the 

radiation parameter R  increases. The value 

)0(θ ′−  increases with increase PeRa / , and 

the value of Le  enhances of )0(θ ′−  when  

5.0−=N , but, it reduce when 0.1=N . 

Table I: Values for (0)f ′  and )0(θ′−  for varying PeRa/ ,  
γ

Pe  with 0=
ξ

Pe , 1=Le       

                Murthy (2000)                  Present work 

Pe

Ra

 

)0(f′  0Pe

γ

=  1=
γ

Pe
 

5=
γ

Pe )0(f ′ 0=
γ

Pe 1=
γ

Pe
 

5=
γ

Pe

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.15834 

1.67946 

2.19261 

3.1000 

4.72062 

0.56421 

0.59224 

0.67933 

0.75803 

0.87062 

1.07684 

0.39895 

0.40279 

0.41884 

0.43484 

0.45627 

0.48784 

0.23044 

0.23068 

0.23564 

0.24077 

0.24688 

0.25447 

1.0 

1.15831 

1.67944 

2.19258 

3.0 

4.72014 

0.56419 

0.59223 

0.67930 

0.75804 

0.87055 

1.07681 

0.39894 

0.40277 

0.41881 

0.43481 

0.45622 

0.48782 

0.23045 

0.23066 

0.23559 

0.24072 

0.24678 

0.25442 
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NAG software (D02HAFE routine) is used 

for integrating the corresponding first-order 

system of equations and shooting and 

matching the initial and boundary 

conditions. The step size 05.0=ηΔ  is used 

while obtaining the numerical solution with 

12
max

=η  and five –decimal accuracy as the 

criterion for convergence. Extensive 

calculations have been performed to obtain 

the flow, temperature and concentration 

fields for a wide range of parameter 

100Pe/Ra0 ≤≤ , 0.10 ≤≤ R , 0.1PeF
0

= , 

,5.0N −=  1.0, ,100Le1.0 ≤≤  01.0C
T

= , 

,5Pe0 ≤≤
γ

 and .5Pe0 ≤≤
ξ

 With ,0R =  

,0PeF
0

=  (Darcian  case), 0Pe =

γ

 and 

0Pe =

ξ
 the present problem reduces to heat 

and mass transfer by Darcian mixed 

convection in porous media analyzed by Lia 

[4], and for  0.1PeF
0

=  with variation of 

another parameter compared with Murthy 

(2000). 

          Aiding flow: when buoyancy is aiding 

the flow, for 0N >  (aiding buoyancy case) 

the tangential velocity evolves from nonzero 

wall velocity to uniform freestream velocity 

for all values of 0N > . The vertical 

component of velocity attains negative 

values near the wall and well inside the 

boundary layer. 
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Table (II): Variation of )0(θ ′−  for varying of R ,

PeRa / , 
γ

Pe  and Le  with 0=

ξ
Pe , 5.0−=N  
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NAG software (D02HAFE routine) is used 

for integrating the corresponding first-order 

system of equations and shooting and 

matching the initial and boundary 

conditions. The step size 05.0=ηΔ  is used 

while obtaining the numerical solution with 

12
max

=η  and five –decimal accuracy as the 

criterion for convergence. Extensive 

calculations have been performed to obtain 

the flow, temperature and concentration 

fields for a wide range of parameter 

100Pe/Ra0 ≤≤ , 0.10 ≤≤ R , 0.1PeF
0

= , 

,5.0N −=  1.0, ,100Le1.0 ≤≤  01.0C
T

= , 

,5Pe0 ≤≤
γ

 and .5Pe0 ≤≤
ξ

 With ,0R =  

,0PeF
0

=  (Darcian  case), 0Pe =

γ

 and 

0Pe =

ξ
 the present problem reduces to heat 

and mass transfer by Darcian mixed 

convection in porous media analyzed by Lia 

[4], and for  0.1PeF
0

=  with variation of 

another parameter compared with Murthy 

(2000). 

          Aiding flow: when buoyancy is aiding 

the flow, for 0N >  (aiding buoyancy case) 

the tangential velocity evolves from nonzero 

wall velocity to uniform freestream velocity 

for all values of 0N > . The vertical 

component of velocity attains negative 

values near the wall and well inside the 

boundary layer. 

 
 
 
 

Table I: Values for 
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 and 
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 for varying PeRa / , 
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Table (II): Variation of )0(θ ′−  for varying of R ,
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γ
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The wall temperature gradient values for 

0.1
0

=PeF  for two values of 5.0−=N  and 

0.1=N  are presented in Tables (II-III). The 

value of )0(f ′  is independent on R . From 

these tables, it is clear that )0(f ′  depends 

on the buoyancy ratioN . The variation of 

the heat transfer coefficient with PeRa /  for 

nonzero values of 
γ

Pe  is studied for a wide 

range of values of .Le  The effect of thermal 

dispersion on the heat transfer is studied 

keeping 0=

ξ
Pe . Consistent with the results 

presented in Lai and Kulacki (1991b), the 

value of )0(θ ′−  decreases as the thermal 

dispersion coefficient 
γ

Pe  increases.  

Table (III): Variation of )0(θ ′−  for varying of R , 

PeRa / , 
γ

Pe  and Le  with 0=

ξ
Pe , 0.1=N . 
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Also for large 
γ

Pe , in a very small region 

near the wall, temperature gradient is greatly 

increased and as a result heat transfer is 

greatly enhanced due to thermal dispersion. 

The value of )0(θ ′−  decreases as the 

radiation parameter R  increases. The value 

)0(θ ′−  increases with increase PeRa / , and 

the value of Le  enhances of )0(θ ′−  when  

5.0−=N , but, it reduce when 0.1=N . 

Table I: Values for (0)f ′  and )0(θ′−  for varying PeRa/ ,  
γ

Pe  with 0=
ξ

Pe , 1=Le       
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Table (II): Variation of )0(θ ′−  for varying of R , PeRa / , 
γ

Pe and Le  with 0=
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0.1=Le  10=Le  

R  

Ra

Pe
 (0)f ′

 

0.0Pe

γ

=

 
1.0Pe

γ

=

 
5.0Pe

γ

=

 
0.0Pe

γ

=

 
1.0Pe

γ

=

 
5.0Pe

γ

=

 

0.0 

 

 

 

 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.15831 

1.67944 

2.19258 

3.0 

4.72014 

0.56419

0.59223 

0.67930 

0.75804 

0.87055 

1.07681 

0.39894

0.40277 

0.41881 

0.43483 

0.45622 

0.48782 

0.23045

0.23066 

0.23559 

0.24072 

0.24678 

0.25442 

0.56419 

0.60540 

0.72436 

0.82473 

0.96171 

1.20301 

0.39894 

0.41525 

0.43500 

0.45104 

0.47823 

0.50729 

0.23045

0.23699 

0.24041 

0.26959 

0.30644 

0.32186 

0.5 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.15831 

1.67944 

2.19258 

3.0 

4.72014 

0.37535

0.39641 

0.46052 

0.51733 

0.59736 

0.74209 

0.31573

0.32513 

0.35362 

0.37732 

0.40693 

0.44934 

0.21125

0.21387 

0.22330 

0.23079 

0.23907 

0.24913 

0.37535 

0.40513 

0.48921 

0.55896 

0.65332 

0.81843 

0.31573 

0.33464 

0.38192 

0.41443 

0.45012 

0.48891 

0.21125

0.21952 

0.23688 

0.25596 

0.27931 

0.30564 

1.0 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.15831 

1.67944 

2.19258 

3.0 

4.72014 

0.29251

0.31030 

0.36366 

0.41031 

0.47539 

0.59211 

0.26541

0.27666 

0.30942 

0.33615 

0.36943 

0.41781 

0.19552

0.19979 

0.21250 

0.22283 

0.23194 

0.24411 

0.29251 

0.31701 

0.38517 

0.43379 

0.51853 

0.65721 

0.26541 

0.28432 

0.33254 

0.35999 

0.40153 

0.45391 

0.19552

0.20490 

0.22500 

0.24186 

0.27311 

0.29655 

 

 

 

 Author name / Journal of Engineering and Applied Sciences 00 (00) 000–000 7 

9 4 3 3 1 4 

1.

0 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.158

31 

1.679

44 

2.192

58 

3.0 

4.720

14 

0.2925

1 

0.3103

0 

0.3636

6 

0.4103

1 

0.4753

9 

0.5921

1 

0.2654

1 

0.2766

6 

0.3094

2 

0.3361

5 

0.3694

3 

0.4178

1 

0.1955

2 

0.1997

9 

0.2125

0 

0.2228

3 

0.2319

4 

0.2441

1 

0.2925

1 

0.3170

1 

0.3851

7 

0.4337

9 

0.5185

3 

0.6572

1 

0.2654

1 

0.2843

2 

0.3325

4 

0.3599

9 

0.4015

3 

0.4539

1 

0.1955

2 

0.2049

0 

0.2250

0 

0.2418

6 

0.2731

1 

0.2965

5 

 

The wall temperature gradient values for 

0.1
0

=PeF  for two values of 5.0−=N  and 

0.1=N  are presented in Tables (II-III). The 

value of )0(f ′  is independent on R . From 

these tables, it is clear that )0(f ′  depends 

on the buoyancy ratio N . The variation of 

the heat transfer coefficient with PeRa /  for 

nonzero values of 
γ

Pe  is studied for a wide 

range of values of .Le  The effect of thermal 

dispersion on the heat transfer is studied 

keeping 0=

ξ
Pe . Consistent with the results 

presented in Lai and Kulacki (1991b), the 

value of )0(θ ′−  decreases as the thermal 

dispersion coefficient 
γ

Pe  increases.  
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γ

Pe  and Le  with 0=
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Pe , 0.1=N . 
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For 0=

ξ
Pe , the value of )0(φ ′−  increases 

with increasing values of PeRa /  for all 

values of Le  and N . For large 
ξ

Pe , the 

value of )0(φ ′−  decreases rapidly to near 

zero values with increasing PeRa / . 
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      The variation of 
2/1

x

Pe

Nu

−  with R  and 

PeRa /  in the opposing flow is presented in 

Table (VI) with 0.1
0

=PeF  for different 

value of ( 0=

γ

Pe , 1, 5) and ( 5.0−=N , 

1.0). Thermal dispersion and radiation 

enhances the heat transfer rate in both 

5.0−=N , 1.0 for all values of 0>Le . 

Interestingly, for fixed Le , and nonzero 
γ

Pe

, there exists one critical value of PeRa /  

before which the 
2/1

x

Pe

Nu

−  for 0.1=N  is 

more than that for 5.0−=N  and after which 

its reverse is seen. The 
2/1

x

Pe

Sh

−  is presented 

against PeRa /  for 0.1
0

=PeF  and for six 

combinations of 
ξ

Pe  and N in Table (VII). 

 Author name / Journal of Engineering and Applied Sciences 00 (00) 000–000 9 

0.

5 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.561

55 

3.000

00 

4.216

99 

6.000

00 

9.611

87 

0.565

19 

0.663

73 

0.879

32 

1.031

86 

1.224

35 

1.545

83 

0.398

94 

0.392

35 

0.383

04 

0.377

78 

0.372

06 

0.364

36 

0.230

45 

0.199

82 

0.171

34 

0.162

61 

0.156

68 

0.151

92 

1.784

12 

2.144

84 

2.902

18 

3.465

93 

4.112

05 

5.135

85 

0.537

93 

0.482

44 

0.429

76 

0.410

79 

0.399

98 

0.369

79 

0.249

87 

0.209

47 

0.174

85 

0.167

97 

0.158

25 

0.150

11 

1.

0 

0.0 

1.0 

5.0 

10 

20 

50 

1.0 

1.561

55 

3.000

00 

4.216

99 

6.000

00 

9.611

87 

0.564

19 

0.666

32 

0.885

99 

1.040

74 

1.235

58 

1.560

49 

0.398

94 

0.394

77 

0.387

72 

0.382

89 

0.377

20 

0.369

09 

0.230

45 

0.200

98 

0.172

97 

0.164

17 

0.158

09 

0.153

10 

1.784

12 

2.148

61 

2.910

83 

3.492

15 

4.174

99 

5.241

93 

0.537

93 

0.486

15 

0.436

04 

0.415

37 

0.401

92 

0.381

29 

0.249

87 

0.210

80 

0.176

62 

0.169

96 

0.160

07 

0.152

15 

 

For 0=

ξ
Pe , the value of )0(φ ′−  increases 

with increasing values of PeRa /  for all 

values of Le  and N . For large 
ξ

Pe , the 

value of )0(φ ′−  decreases rapidly to near 

zero values with increasing PeRa / . 

 
 

Table (VI): Variation of 
2/1

x

Pe

Nu

−  for varying of R , 

N , Le , PeRa / , 
γ

Pe  with 0=

ξ
Pe , 1

0

=PeF  

        0.1=Le  0.10=Le  

 

N

     

 

 

R

   

        

Ra

Pe

 

0Pe

γ

=

 

1Pe

γ

=

 

5Pe

γ

=

 

0Pe

γ

=

 

1Pe

γ

=

 

5Pe

γ

=

 

-

0.5 

0.

0 

0.1 

1.0 

0.561

18 

0.531

89 

0.790

52 

0.722

13 

1.3638

0 

1.1903

3 

0.5596

4 

0.5140

9 

0.7874

7 

0.6881

0 

1.3587

2 

1.1310

0 

-

0.5 

0.

5 

0.1 

1.0 

0.629

32 

0.591

67 

0.840

34 

0.765

52 

1.3933

1 

1.2156

0 

0.6275

8 

0.5708

4 

0.8372

4 

0.7300

6 

1.3883

0 

1.1564

3 

-

0.5 

1.

0 

0.1 

1.0 

0.689

76 

0.644

54 

0.886

88 

0.805

96 

1.4221

2 

1.2402

7 

0.6878

4 

0.6210

9 

0.8837

2 

0.7693

9 

1.4170

9 

1.1813

6 

1.0 0.

0 

0.1 

1.0 

0.551

87 

0.373

42 

0.773

91 

0.471

89 

1.3387

8 

0.7629

4 

0.5550

0 

0.4262

5 

0.7800

7 

0.5556

1 

1.3491

4 

0.9015

3 

1.0 0.

5 

0.1 

1.0 

0.619

20 

0.415

04 

0.824

01 

0.511

68 

1.3688

5 

0.8028

1 

0.6227

8 

0.4767

9 

0.8303

0 

0.6025

7 

1.3791

3 

0.9527

8 

1.0 1.

0 

0.1 

1.0 

0.679

01 

0.447

83 

0.870

74 

0.531

73 

1.3981

6 

.82759 

0.6829

5 

0.5233

4 

0.8771

2 

0.6448

3 

1.4082

9 

0.9918

9 

 

      The variation of 
2/1

x

Pe

Nu

−  with R  and 

PeRa /  in the opposing flow is presented in 

Table (VI) with 0.1
0

=PeF  for different 

value of ( 0=

γ

Pe , 1, 5) and ( 5.0−=N , 

1.0). Thermal dispersion and radiation 

enhances the heat transfer rate in both 

5.0−=N , 1.0 for all values of 0>Le . 

Interestingly, for fixed Le , and nonzero 
γ

Pe

, there exists one critical value of PeRa /  

before which the 
2/1

x

Pe

Nu

−  for 0.1=N  is 

more than that for 5.0−=N  and after which 

its reverse is seen. The 
2/1

x

Pe

Sh

−  is presented 

against PeRa /  for 0.1
0

=PeF  and for six 

combinations of 
ξ

Pe  and N in Table (VII). 

Table 3:



Journal of Engineering and Applied Sciences, Vol. 3, Issue (1) May, 2016Journal of Engineering and Applied Sciences , Vol. 3, Issue (1) November, 2016

M. A. El-Hakiem and Abdullah: Effect of Radiation and Double Dispersion on Mixed Convection Heat ... 8

8 Author name / Journal of Engineering and Applied Sciences 00 (00) 000–000 

 

Table (IV): Variation of )0(φ ′−  for varying of 

R , PeRa / , 
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     The effect of radiation and solutal 

dispersion on the mass transfer coefficient 

has been analyzed keeping 0=

γ

Pe . The 

values of )0(φ ′−  have been tabulated for 

0.1
0

=PeF , 5.0−=N  and 0.1=N  in 

Tables (VI-V). Analogous to the pure 

thermal convection process, the value of 

)0(φ ′−  decreases with increasing values of 

ξ
Pe . But the increase value of radiation 

parameter   R  enhance )0(φ ′−  with fixed 

the other parameters. Interestingly, at large

ξ
Pe , for large values of PeRa / , in a 

relatively large region (larger than that 

observed for thermal gradients) near the 

wall, the concentration gradient is greatly 

increased. But, against this expectation 

peculiar behavior in the mass transfer 

coefficient is observed (see Murthy (2000)). 

The imbalance between the Lewis number 

and buoyancy parameter influence more 

against the enhancement of the mass transfer 

results.  
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Table (III): Variation of )0(θ ′−  for varying of R , PeRa / , 
γ

Pe  and Le  with 0=
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      The variation of 
2/1

x

Pe

Nu

−  with R  and 

PeRa /  in the opposing flow is presented in 

Table (VI) with 0.1
0

=PeF  for different 

value of ( 0=

γ

Pe , 1, 5) and ( 5.0−=N , 

1.0). Thermal dispersion and radiation 

enhances the heat transfer rate in both 

5.0−=N , 1.0 for all values of 0>Le . 

Interestingly, for fixed Le , and nonzero 
γ

Pe

, there exists one critical value of PeRa /  

before which the 
2/1

x

Pe

Nu

−  for 0.1=N  is 

more than that for 5.0−=N  and after which 

its reverse is seen. The 
2/1

x

Pe

Sh

−  is presented 

against PeRa /  for 0.1
0

=PeF  and for six 

combinations of 
ξ

Pe  and N in Table (VII). 
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Figure 1 illustrate velocity profiles as a 

function of the similarity variable η  for case 

aiding buoyancy. Fig. 1 shows the velocity 

distribution for varying values of radiation 

parameter R  for non-Darcy case  

( 0.1PeF
0

= ), 0==

ξγ
PePe  (aiding flow) 

with 0.1=Le , 5.0−=N . From this figure 

we, observe that the velocity profiles 

increases with increase of parameter 

radiation. Also, we observe that the 

increases of PeRa /  enhances the velocity 

at fixed the other parameters. 

The temperature profile for the case aiding 

buoyancy is presented in Fig. 2. It is evident 

from this figure the radiation parameter R  

enhances the temperature profiles. It can be 

seen that as the buoyancy parameter N  

increases, the temperature profiles 

decreases. Also, this figure clearly indicates 

the favorable influence of the thermal 

dispersion on the temperature profiles. The 

temperature profiles θ  as a function of η  

increases with increase of thermal dispersion 

γ
Pe  for 5.0−=N , 0.1=N . 

The effect of radiation parameter R , solutal 

dispersion 
ξ

Pe  and buoyancy parameter N  

on concentration profiles is plotted in Fig. 3. 

From this figure, we observe the 

concentration profiles for the case aiding 

buoyancy increases with increase the solutal 

dispersion 
ξ

Pe , also, it increase with 

radiation parameter increase. It is 

noteworthy, from Fig. 3, that as the 

buoyancy parameter increases the 

concentration profiles decreases. 
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Figure 1 illustrate velocity profiles as a 

function of the similarity variable η  for case 

aiding buoyancy. Fig. 1 shows the velocity 

distribution for varying values of radiation 

parameter R  for non-Darcy case  

( 0.1PeF
0

= ), 0==

ξγ
PePe  (aiding flow) 

with 0.1=Le , 5.0−=N . From this figure 

we, observe that the velocity profiles 

increases with increase of parameter 

radiation. Also, we observe that the 

increases of PeRa /  enhances the velocity 

at fixed the other parameters. 

The temperature profile for the case aiding 

buoyancy is presented in Fig. 2. It is evident 

from this figure the radiation parameter R  

enhances the temperature profiles. It can be 

seen that as the buoyancy parameter N  

increases, the temperature profiles 

decreases. Also, this figure clearly indicates 

the favorable influence of the thermal 

dispersion on the temperature profiles. The 

temperature profiles θ  as a function of η  

increases with increase of thermal dispersion 

γ
Pe  for 5.0−=N , 0.1=N . 

The effect of radiation parameter R , solutal 

dispersion 
ξ

Pe  and buoyancy parameter N  

on concentration profiles is plotted in Fig. 3. 

From this figure, we observe the 

concentration profiles for the case aiding 

buoyancy increases with increase the solutal 

dispersion 
ξ

Pe , also, it increase with 

radiation parameter increase. It is 

noteworthy, from Fig. 3, that as the 

buoyancy parameter increases the 

concentration profiles decreases. 
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Figure 1 illustrate velocity profiles as a 

function of the similarity variable η  for case 

aiding buoyancy. Fig. 1 shows the velocity 

distribution for varying values of radiation 

parameter R  for non-Darcy case  

( 0.1PeF
0

= ), 0==

ξγ
PePe  (aiding flow) 

with 0.1=Le , 5.0−=N . From this figure 

we, observe that the velocity profiles 

increases with increase of parameter 

radiation. Also, we observe that the 

increases of PeRa /  enhances the velocity 

at fixed the other parameters. 

The temperature profile for the case aiding 

buoyancy is presented in Fig. 2. It is evident 

from this figure the radiation parameter R  

enhances the temperature profiles. It can be 

seen that as the buoyancy parameter N  

increases, the temperature profiles 

decreases. Also, this figure clearly indicates 

the favorable influence of the thermal 

dispersion on the temperature profiles. The 

temperature profiles θ  as a function of η  

increases with increase of thermal dispersion 

γ
Pe  for 5.0−=N , 0.1=N . 

The effect of radiation parameter R , solutal 

dispersion 
ξ

Pe  and buoyancy parameter N  

on concentration profiles is plotted in Fig. 3. 

From this figure, we observe the 

concentration profiles for the case aiding 

buoyancy increases with increase the solutal 

dispersion 
ξ

Pe , also, it increase with 

radiation parameter increase. It is 

noteworthy, from Fig. 3, that as the 

buoyancy parameter increases the 

concentration profiles decreases. 
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increases, the temperature profiles 
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the favorable influence of the thermal 

dispersion on the temperature profiles. The 

temperature profiles θ  as a function of η  
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γ
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The effect of radiation parameter R , solutal 

dispersion 
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Pe  and buoyancy parameter N  

on concentration profiles is plotted in Fig. 3. 

From this figure, we observe the 

concentration profiles for the case aiding 

buoyancy increases with increase the solutal 

dispersion 
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Pe , also, it increase with 

radiation parameter increase. It is 

noteworthy, from Fig. 3, that as the 

buoyancy parameter increases the 

concentration profiles decreases. 
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 Fig.1 Non dimensional velocity profiles for varying
of Ra/Pe, Le, N and R with CT=0
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Fig. 1: Nondimensional velocity profiles for varying of Ra/Pe, Le, N and R with CT=0.01
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    Fig. 3: Variation of concentration profiles for varying R, Peξ, N with Ra/Pe=1, Peγ=0, Le=1, CT=0.01
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parameter reduced the mass transfer 

coefficient. Uniform trend in the Sherwood 

number results is observed with increase in 

the buoyancy ratio N  from –0.5 to 1.0. 

The variation of the heat transfer 

coefficient with PeRa /  for nonzero values 

of 
γ

Pe  is studied for a wide range of values 

of Le  and plotted in Fig. 6. For 0.1=Le  

this figure clearly indicate the favorable 

influence of thermal dispersion and radiation 

on the heat transfer results. The value of 

2/1

x

Pe

Nu

−  increases with increasing PeRa / . 

Aiding buoyancy and radiation parameter R  

favors the heat transfer, whereas this 

favorable action is aided by 0.1=Le  when

5.0−=N , and is suppressed by the 

0.1=Le  when 0.1=N . These results are in 

agreement with the results reported by 

Murthy (2000) and Lai (1991). 

The complex interaction between R , N , 

ξ
Pe  and PeRa /  show complex behavior 

for 
2/1
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Pe

Sh

−  curve. The result presented in 

Fig. 7 with 0.1=Le , 0.1
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=PeF  and 
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Pe . In the case of aiding buoyancy, 

when 0.1=Le , the mass transfer coefficient 

increases with PeRa /  and, the dispersion 

mechanism augments the mass transfer, 
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the decreases thereafter. Its value becomes 

less than the corresponding value for 

0.1=
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Pe  from 20/ =PeRa  on wards: it 

may be inferred that the strength of the 

solutal dispersion becomes insignificant at 

higher values of PeRa /  in the case of 

opposing buoyancy. 

Opposing flow. The flow field becomes 

more complex when the freestream flow is 

opposing the buoyancy. Like in the aiding 

flow case, the wall velocity depends only the 

inertial, radiation parameters and buoyancy 

ratio. Flow separation is the most common 

feature observed in the opposing flows. The 

flow separation point also depends on the 

buoyancy ratio. In the Forchheimer flow  

( 1
0

=PeF ) the occurrence of the flow 

separation is delayed the separation points 

are observed to occur at ,1.0/ =PeRa  1 for 

5.0−=N , 1.0 and 0=R , 0.5, 1.0. The 

presence of the radiation, thermal and 

solutal dispersion diffusivity will not alter 

the point of flow separation in non-Darcy 

flow. The heat and mass transfer coefficients 

in opposing flow are presented in Fig. 8. As 

expected the heat transfer decreases with Le  

for opposing buoyancy, where as it increases 

with Le  for aiding buoyancy. It is just a 

reverse mechanism to the aiding flow case 

and is clearly seen also, in Fig. 8. The 
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are at higher level than those for aiding 

buoyancy. It is evident from the Fig. 8 that 

the mass transfer coefficient increases with 

Le  also, the 
2/1

x

Pe

Sh

−  values in opposing 

buoyancy are higher level than those in 

aiding buoyancy. The radiation parameter 

enhance the heat transfer coefficient and 

reduce the mass transfer coefficient. Aiding 

buoyancy is hindrance to the freestream 

flow in the opposing flow case, so a 

reduction in the transport quantities is 

observed. 

1. Concluding Remarks 

Similarity solution for hydrodynamic 

dispersion-radiation in mixed convection 

heat and mass transfer near vertical surface 

embedded in a porous medium has been 

presented. The heat and mass transfer in the 

boundary layer region has been analyzed for 

aiding and opposing buoyancies in both the 

aiding and opposing flows. The structure of 

the flow, temperature and concentration 

fields in the non-Darcy porous media are 

governed by complex interactions among 

the diffusion rate Le  and buoyancy ratio N  

in addition to the flow driving parameter 

PeRa / . For small values of Le  in the 

opposing buoyancy, flow reversal near the 

wall is observed. The heat transfer 

coefficient always increases with
 

PeRa / . 

Thermal dispersion-radiation favors the heat 

transfer.  As Le  increases the effect of 

solutal dispersion on the non-dimensional 

mass transfer coefficient becomes less 

predictable in both aiding and opposing 

buoyancies. In the opposing flow case, the 

flow separation point is observed to depend 

on the inertial parameter and buoyancy ratio. 

A reduction in the heat and mass transfer 

coefficients is seen with increasing values of 

PeRa / . The Lewis number has complex 

impact on the heat and mass transfer 

mechanism. 
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vu,  velocity components in x and y 

 directions 

yx,  axial and normal coordinates 

α  thermal diffusivity 

ff
α  effective of thermal diffusivity  

T

β  coefficient of thermal expansion 

C

β  coefficient of solutal expansion 

η     dimensionless distance 

θ       non-dimensional temperature 

ν       kinematic viscosity 

φ       non-dimensional concentration 

γ   coefficient of dispersion thermal 

 diffusivity 

ξ    coefficient of dispersion solutal 

 diffusivity 

ψ       stream function 
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aiding and opposing buoyancies in both the 

aiding and opposing flows. The structure of 

the flow, temperature and concentration 

fields in the non-Darcy porous media are 

governed by complex interactions among 

the diffusion rate Le  and buoyancy ratio N  

in addition to the flow driving parameter 

PeRa / . For small values of Le  in the 

opposing buoyancy, flow reversal near the 

wall is observed. The heat transfer 

coefficient always increases with
 

PeRa / . 

Thermal dispersion-radiation favors the heat 

transfer.  As Le  increases the effect of 

solutal dispersion on the non-dimensional 

mass transfer coefficient becomes less 

predictable in both aiding and opposing 

buoyancies. In the opposing flow case, the 

flow separation point is observed to depend 

on the inertial parameter and buoyancy ratio. 

A reduction in the heat and mass transfer 

coefficients is seen with increasing values of 

PeRa / . The Lewis number has complex 

impact on the heat and mass transfer 

mechanism. 

Nomenclature 

c        inertial coefficient 

C       concentration 

T

C     temperature ratio 

d       particle diameter  

D       mass diffusivity 

C

D     effective mass diffusivity 

f       dimensionless stream function  

PeF
0

 parameter representing non- 

 Darcian effects        

g

 
acceleration due to gravity 

k  thermal conductivity 

K    permeability coefficient of the 

 porous medium 

Le   Lewis number 

N  buoyancy ratio 

2/1

x
Pe

Nu

  non-dimensional heat transfer 

 coefficient 

x

Pe     local Peclet number 

γ

Pe  parameter representing thermal 

dispersion effects 

ξ
Pe  parameter representing solutal 

 dispersion effects 

r

q   radiative flux  

R      radiation parameter  

x

Ra   modified Rayleigh number 

2/1

x
Pe

Sh

non-dimensional mass transfer  

 coefficient 

T   temperature 
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