





# **Course Specifications**

| <b>Course Title:</b> | Design and Analysis of Algorithms              |  |
|----------------------|------------------------------------------------|--|
| Course Code:         | CSI 321                                        |  |
| Program:             | Computer Science and Information Technology    |  |
| Department:          | Department of Computer Science and Information |  |
| College:             | College of Science                             |  |
| Institution:         | Majmaah University                             |  |



## Table of Contents

| A. Course Identification                                                                    |   |
|---------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                                | 3 |
| B. Course Objectives and Learning Outcomes                                                  |   |
| 1. Course Description                                                                       | 4 |
| 2. Course Main Objective                                                                    | 4 |
| 3. Course Learning Outcomes                                                                 | 4 |
| C. Course Content                                                                           |   |
| D. Teaching and Assessment5                                                                 |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment<br>Methods | 5 |
| 2. Assessment Tasks for Students                                                            | 6 |
| E. Student Academic Counseling and Support6                                                 |   |
| F. Learning Resources and Facilities7                                                       |   |
| 1.Learning Resources                                                                        | 7 |
| 2. Facilities Required                                                                      | 7 |
| G. Course Quality Evaluation7                                                               |   |
| H. Specification Approval Data8                                                             |   |

## A. Course Identification

| <b>1. Credit hours:</b> 3 credit hours (2 lecture + 2 Exercise)             |  |  |
|-----------------------------------------------------------------------------|--|--|
| 2. Course type                                                              |  |  |
| <b>a.</b> University College Department <b>J</b> Others                     |  |  |
| <b>b.</b> Required <b>J</b> Elective                                        |  |  |
| <b>3.</b> Level/year at which this course is offered: 6 <sup>th</sup> level |  |  |
| 4. Pre-requisites for this course (if any):                                 |  |  |
| Data Structures (CSI 312)                                                   |  |  |
|                                                                             |  |  |
| 5. Co-requisites for this course (if any): NA                               |  |  |
|                                                                             |  |  |
|                                                                             |  |  |

#### **6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 48                   | 80 %       |
| 2  | Blended               | 6                    | 10%        |
| 3  | E-learning            |                      | 0 %        |
| 4  | Correspondence        |                      | 0 %        |
| 5  | Other                 | 6                    | 10%        |

#### 7. Actual Learning Hours (based on academic semester)

| No                    | Activity                        | Learning Hours |
|-----------------------|---------------------------------|----------------|
| Contac                | et Hours                        |                |
| 1                     | Lecture                         | 30             |
| 2                     | Laboratory/Studio               | 30             |
| 3                     | Tutorial                        |                |
| 4                     | Others (specify)                |                |
|                       | Total                           | 60             |
| Other Learning Hours* |                                 |                |
| 1                     | Study                           | 45             |
| 2                     | Assignments                     | 15             |
| 3                     | Library                         | 5              |
| 4                     | Projects/Research Essays/Theses | 5              |
| 5                     | Others (specify)                | 0              |
|                       | Total                           | 70             |

\* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times



## **B.** Course Objectives and Learning Outcomes

#### **1.** Course Description

Algorithms are fundamental to computer science and software engineering. The real-world performance of any software system depends on two things: (1) the algorithms chosen, and (2) the suitability and efficiency of the various layers of implementation. Good algorithm design is therefore crucial for the performance of all software systems. Moreover, the study of algorithms provides insight into the intrinsic nature of a problem as well as possible solution techniques independent of programming languages, programming paradigms, computer hardware, and other implementation aspects. Course Description: This course will cover the following topics: Basic Definitions, Solving Recursions,  $O(n^2)$  Sorting Algorithms, Divide and Conquer Paradigm, Searching Algorithms, Graph Algorithms, Advanced data structures, Dynamic Programming Paradigm, Greedy Algorithms Paradigm.

#### 2. Course Main Objective

- 1. To provide students with the ability to select algorithms appropriate to a particular purpose and to apply them recognizing the possibility that no suitable algorithm may exist.
- 2. To acquire students with the range of algorithms that address an important set of welldefined problems, recognizing their strengths and weaknesses, and their suitability in particular contexts.
- 3. To introduce students to a new range of paradigms and techniques to design algorithms and to solve problems.
- 4. To enable students to be efficient in their work.

#### 3. Course Learning Outcomes

|     | CLOs                                                                                                                                                                            | Aligned<br>PLOs |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1   | Knowledge:                                                                                                                                                                      |                 |
| 1.1 | Recognize the role of algorithms relative to other technologies used in computer science.                                                                                       | k1              |
| 1.2 | Name the key algorithmic design paradigms including Brute force, Divide<br>and conquer, Decrease and conquer, Transform and conquer, Greedy<br>Algorithms, Dynamic programming. | k2              |
| 1.3 | Define the language, notation, and concepts of algorithmic design.                                                                                                              | k3              |
| 2   | Skills :                                                                                                                                                                        |                 |
| 2.1 | Predict the resources that the algorithm requires.                                                                                                                              | s1              |
| 2.2 | Develop, analyze and compare existing algorithms for a wide variety of problems including sorting, searching, graphs, and binary search tree.                                   | s2              |
| 2.3 | Justify and analyze algorithmic tradeoffs: time vs. space, deterministic vs. randomized, and exact vs. approximate.                                                             | s3              |
| 2.4 | Write efficient algorithms of certain selected problems.                                                                                                                        | s4              |
| 3   | Competence:                                                                                                                                                                     |                 |
| 3.1 | Work cooperatively in a small group environment.                                                                                                                                | c1              |
| 3.2 | Save time and space in each task.                                                                                                                                               | c2              |
| 3.3 |                                                                                                                                                                                 |                 |
| 3   |                                                                                                                                                                                 |                 |



## C. Course Content

| No | List of Topics                                                                                                                                                                                                                                                                             |    |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 1  | <b>Basic Definitions:</b> Definition of an algorithm, Time and space tradeoffs in algorithms, Algorithms strategies, Asymptotic analysis of upper and average complexity bounds, Identifying differences among best, average and worst case behaviors, Big oh, omega, and theta notations. |    |  |  |
| 2  | <b>Solving Recursions:</b> Using recurrence relations to analyze recursive algorithms, Substitution method, Recursion-tree method, Master theorem method.                                                                                                                                  |    |  |  |
| 3  | <b>O</b> ( <b>n</b> <sup>2</sup> ) <b>Sorting Algorithms.</b> Insertion, Selection, Bubble sort.                                                                                                                                                                                           | 8  |  |  |
| 4  | <b>Divide and Conquer Paradigm:</b> Elements of the divide and conquer technique, Merge sort, and Quick sort.                                                                                                                                                                              | 8  |  |  |
| 5  | Searching Algorithms. Linear and Binary search.                                                                                                                                                                                                                                            |    |  |  |
| 6  | <b>Graph Algorithms:</b> Representation of graphs (adjacency list, adjacency matrix), Depth- and Breadth-first traversals. Minimum spanning tree (Kruskal's and Prim's algorithms). Dijkstra's algorithm.                                                                                  | 12 |  |  |
| 7  | Advanced data structures: Binary search tree.                                                                                                                                                                                                                                              | 4  |  |  |
| 8  | <b>Dynamic Programming Paradigm:</b> Elements of dynamic programming,<br>Matrix chain algorithm.                                                                                                                                                                                           | 4  |  |  |
| 9  | <b>Greedy Algorithms Paradigm:</b> Elements of greedy algorithm, optimal binary search tree.                                                                                                                                                                                               | 4  |  |  |
|    | Total                                                                                                                                                                                                                                                                                      |    |  |  |

## **D.** Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | <b>Course Learning Outcomes</b>                                                                                                                                                       | <b>Teaching Strategies</b>                        | Assessment Methods                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
| 1.0  | Knowledge                                                                                                                                                                             |                                                   |                                                  |
| 1.1  | Recognize the role of algorithms relative<br>to other technologies used in computer<br>science.                                                                                       | Lectures,<br>Lab demonstrations,<br>Case studies, | Written Exam,<br>Homework<br>assignments,        |
| 1.2  | Name the key algorithmic design<br>paradigms including Brute force, Divide<br>and conquer, Decrease and conquer,<br>Transform and conquer, Greedy<br>Algorithms, Dynamic programming. | Individual presentations                          | Lab assignments,<br>Class Activities,<br>Quizzes |
| 1.3  | Define the language, notation, and concepts of algorithmic design.                                                                                                                    |                                                   |                                                  |
| 2.0  | Skills                                                                                                                                                                                |                                                   |                                                  |
| 2.1  | Predict the resources that the algorithm requires.                                                                                                                                    | Lectures,<br>Lab demonstrations,                  | Written Exam,<br>Homework                        |
| 2.2  | Develop, analyze and compare existing algorithms for a wide variety of                                                                                                                | Case studies,<br>Individual                       | ,assignments,<br>Lab assignments,                |



| Code | Course Learning Outcomes                 | <b>Teaching Strategies</b> | Assessment Methods      |
|------|------------------------------------------|----------------------------|-------------------------|
|      | problems including sorting, searching,   | presentations,             | Class Activities,       |
|      | graphs, and binary search tree.          | Brainstorming              | Quizzes,                |
|      | Justify and analyze algorithmic          |                            | Observations            |
| 22   | tradeoffs: time vs. space, deterministic |                            |                         |
| 2.5  | vs. randomized, and exact vs.            |                            |                         |
|      | approximate.                             |                            |                         |
| 2.4  | Write efficient algorithms of certain    |                            |                         |
| 2.4  | selected problems.                       |                            |                         |
| 3.0  | Competence                               |                            |                         |
| 2 1  | Work cooperatively in a small group      | Small group                | Observations,           |
| 5.1  | environment.                             | discussions,               | Homework                |
|      | Save time and space in each task.        | Whole group                | assignments,            |
| 3.2  |                                          | discussions,               | Lab assignments.        |
|      |                                          | Brainstorming              | <b>Class Activities</b> |
|      |                                          | Presentation               |                         |

#### 2. Assessment Tasks for Students

| # | Assessment task*                                     | Week Due           | Percentage of Total<br>Assessment Score |
|---|------------------------------------------------------|--------------------|-----------------------------------------|
| 1 | First written mid-term exam                          | 6                  | 10%                                     |
| 2 | Second written mid-term exam                         | 12                 | 10%                                     |
| 3 | Presentation, class activities, and group discussion | Every week         | 10%                                     |
| 4 | Homework assignments                                 | After each chapter | 10%                                     |
| 5 | Implementation of presented algorithms               | Every two<br>weeks | 10%                                     |
| 6 | Electronic Quizzes                                   | Every<br>chapter   | 10%                                     |
| 7 | Final written exam                                   | 16                 | 40%                                     |
| 8 | Total                                                |                    | 100%                                    |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

## E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Office hours: Sun: 10-12, Mon. 10-12, Thru. 8-10 Office call: Sun. 12-1 and Wed 12-1

Email: <u>h.haly@mu.edu.sa</u> Mobile: 0538231332

## **F. Learning Resources and Facilities**

#### **1.Learning Resources**

| Required Textbooks                | Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford<br>Stein, Introduction to Algorithms, Third Edition. MIT Press,<br>2009                                                                                                                              |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Essential References<br>Materials | Michael T. Goodrich, Roberto Tamassia, and Divid Mount, Data<br>Structures and Algorithms in C++, John Wiley & Sons Inc, 2011.                                                                                                                                     |  |
| Electronic Materials              | MIT courseware, videos of the algorithms course<br>• http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&<br>tid=3440<br>• <u>http://www-</u><br><u>rohan.sdsu.edu/faculty/baase/algortext.html#slideshttp</u> :<br>//en.wikipedia.org/wiki/Genetic_disorders |  |
| Other Learning<br>Materials       | None                                                                                                                                                                                                                                                               |  |

### 2. Facilities Required

| Item                                                                                                                      | Resources                                                    |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | Classroom and Labe available at College of science in Zulfi. |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | All resource are available in the halls                      |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) |                                                              |

## **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues               | Evaluators            | <b>Evaluation Methods</b>                                                                                                                                         |
|------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching and assessment | Students<br>Reviewers | Questionnaires (course<br>evaluation) filled by the students<br>and electronically organized by<br>the university.<br>Student-faculty and management<br>meetings. |
| Quality of learning resources            | Program Leaders       | Direct/indirect                                                                                                                                                   |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

# H. Specification Approval Data

| Council / Committee | Dr Fayez AlFayez<br>Dr. Hassan Aly |
|---------------------|------------------------------------|
| Reference No.       | 4134                               |
| Date                | 13-10-2019                         |