





# **Course Specifications**

| <b>Course Title:</b> | Compiler Design                             |  |
|----------------------|---------------------------------------------|--|
| Course Code:         | CSI413                                      |  |
| Program:             | Computer Science and Information Technology |  |
| Department:          | Computer Science and Information.           |  |
| College:             | College of Science in Zulfi                 |  |
| Institution:         | Majmaah University                          |  |



# Table of Contents

| A. Course Identification                                                                 |   |
|------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                             | 3 |
| B. Course Objectives and Learning Outcomes4                                              |   |
| 1. Course Description                                                                    | 4 |
| 2. Course Main Objective                                                                 | 4 |
| 3. Course Learning Outcomes                                                              | 4 |
| C. Course Content                                                                        |   |
| D. Teaching and Assessment                                                               |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods | 5 |
| 2. Assessment Tasks for Students                                                         | 6 |
| E. Student Academic Counseling and Support6                                              |   |
| F. Learning Resources and Facilities6                                                    |   |
| 1.Learning Resources                                                                     | 6 |
| 2. Facilities Required                                                                   | 6 |
| G. Course Quality Evaluation7                                                            |   |
| H. Specification Approval Data7                                                          |   |

# A. Course Identification

| 1. Credit hours:3                                              |
|----------------------------------------------------------------|
| 2. Course type                                                 |
| <b>a.</b> University College Department $$ Others              |
| <b>b.</b> Required $$ Elective                                 |
| 3. Level/year at which this course is offered: 7 <sup>th</sup> |
| 4. Pre-requisites for this course (if any):                    |
| CSI 222                                                        |
| CSI 221                                                        |
|                                                                |
| 5. Co-requisites for this course (if any):                     |
| None                                                           |
|                                                                |

#### 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 42                   | 70%        |
| 2  | Blended               | 6                    | 10%        |
| 3  | E-learning            | 6                    | 10%        |
| 4  | Correspondence        | 0                    | 0%         |
| 5  | Other                 | 6                    | 10%        |

#### 7. Actual Learning Hours (based on academic semester)

| No                    | Activity                        | Learning Hours |
|-----------------------|---------------------------------|----------------|
| Conta                 | ct Hours                        |                |
| 1                     | Lecture                         | 30             |
| 2                     | Laboratory/Studio               | 20             |
| 3                     | Tutorial                        | 10             |
| 4                     | Others (specify)                |                |
|                       | Total                           | 60             |
| Other Learning Hours* |                                 |                |
| 1                     | Study                           | 10             |
| 2                     | Assignments                     | 3              |
| 3                     | Library                         | 2              |
| 4                     | Projects/Research Essays/Theses | 1              |
| 5                     | Others (specify)                | 4              |
|                       | Total                           | 20             |

\* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

# **B.** Course Objectives and Learning Outcomes

#### 1. Course Description

The goal of this course is to introduce the design and implementation of compilers. Topics include: compiler organization, algorithms for lexical, syntactic and semantic analysis, top-down and bottom-up parsing, symbol table organization, error detection and recovery, intermediate and object code generation, and code optimization. Student has to implement a compiler for a simple high level language (like mini C) as a project.

#### 2. Course Main Objective

The goal of this course is to introduce the design and implementation of compilers. Topics include: compiler organization, algorithms for lexical, syntactic and semantic analysis, top-down and bottom-up parsing (e.g., recursive descent, LL, LR, LALR parsing), symbol table organization, error detection and recovery, intermediate and object code generation, and code optimization. Student has to implement a compiler for a simple high level language (like mini C) as a project.

#### 3. Course Learning Outcomes

| CLOs |                                                                            | Aligned<br>PLOs |  |
|------|----------------------------------------------------------------------------|-----------------|--|
| 1    | 1 Knowledge:                                                               |                 |  |
| 1.1  | Understand the structure of compilers                                      | k1              |  |
| 1.2  | Understand the basic techniques used in compiler construction such as      | k1              |  |
|      | lexical analysis,                                                          |                 |  |
| 1.3  | top-down, bottom-up parsing, context-sensitive analysis, and               | k1              |  |
|      | intermediate code generation.                                              |                 |  |
| 2    | Skills :                                                                   |                 |  |
| 2.1  | 1Explain the core issues of Compiler designS1                              |                 |  |
| 2.2  | 2 Design and implement a compiler using a software engineering approach S1 |                 |  |
| 2.3  | 3 Identify problems, and explain, analyze, and evaluate various design S1  |                 |  |
|      | strategies of compilers.                                                   |                 |  |
| 3    | 3 Competence:                                                              |                 |  |
| 3.1  | Work in a group and learn time management.                                 | C3              |  |
| 3.2  | Learn how to search for information through library and internet.          | C3              |  |
| 3.3  | Communicate with teacher, ask questions, solve problems, and use           | C3              |  |
|      | computers.                                                                 |                 |  |
| 3.4  | Use Information technology and computer skills to gather information       | C3              |  |
|      | about a selected topic                                                     |                 |  |

## **C.** Course Content

| No | List of Topics                                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1  | <b>Introduction to Compilers:</b><br>The role of language translation in the programming process, Comparison of interpreters and compilers, Language translation phases, Machine dependent and machine independent aspects of translation, Language translation as a software engineering activity | 8                |
| 2  | Lexical Analysis:                                                                                                                                                                                                                                                                                  | 8                |

|       | Application of regular expressions in Lexical Analysis, Scanning, hand<br>coded scanner vs. automatically generated scanners, formal definition of<br>tokons implementation of finite state automate |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       | Syntax Analysis and Parsing:                                                                                                                                                                         |    |
| 3     | Revision of formal definition of grammars, BNF and EBNF, Bottom-up vs.                                                                                                                               | 12 |
|       | Top-down parsing, Tabular vs. Recursive-descent parsers, Error handling,                                                                                                                             |    |
|       | Parser Generators:                                                                                                                                                                                   |    |
| 4     | Automatic generation of tabular parsers, Symbol table management, Use of                                                                                                                             | 12 |
|       | tools in support of the translation process                                                                                                                                                          |    |
|       | Semantic Analysis:                                                                                                                                                                                   |    |
| 5     | Data type as set of values with set of operations, data types, Type-checking                                                                                                                         | 8  |
| 5     | models, Semantic models of User defined types, Parametric polymorphism,                                                                                                                              | 0  |
|       | Subtype polymorphism, Type checking algorithms.                                                                                                                                                      |    |
|       | Intermediate Code Generation:                                                                                                                                                                        |    |
| 6     | Intermediate and object code, intermediate representations, implementation                                                                                                                           | 12 |
|       | of code generators                                                                                                                                                                                   |    |
| Total |                                                                                                                                                                                                      |    |

# **D.** Teaching and Assessment

# **1.** Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                            | Teaching Strategies                             | Assessment Methods                                      |
|------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| 1.0  | Knowledge                                                                                           |                                                 |                                                         |
| 1.1  | Understand the structure of compilers                                                               | Lectures<br>Lab<br>presentations                | Mid-terms exams<br>Lab exam<br>Homeworks<br>Final exams |
| 2.0  | Skills                                                                                              |                                                 |                                                         |
| 2.1  | Explain the core issues of Compiler<br>design Mid-terms exams                                       |                                                 | Mid-terms exams                                         |
| 2.2  | Design and implement a compiler<br>using a software engineering approach Lab<br>Individual          |                                                 | Lab exam<br>Homeworks                                   |
| 2.3  | Identify problems, and explain,<br>analyze, and evaluate various design<br>strategies of compilers. | presentations                                   | Discussions<br>Final exams                              |
| 3.0  | Competence                                                                                          |                                                 |                                                         |
| 3.1  | Work in a group and learn time management.                                                          | Small group                                     |                                                         |
| 3.2  | Learn how to search for information through library and internet.                                   | Whole group                                     |                                                         |
| 3.3  | Communicate with teacher, ask questions, solve problems, and use computers.                         | Brainstorming<br>Presentation<br>demonstrations | Discussions<br>Presentations                            |
| 3.4  | Use Information technology and<br>computer skills to gather information<br>about a selected topic   | Case studies                                    |                                                         |

#### 2. Assessment Tasks for Students

| # | Assessment task*                                     | Week Due                  | Percentage of Total<br>Assessment Score |
|---|------------------------------------------------------|---------------------------|-----------------------------------------|
| 1 | First written mid-term exam                          | 6                         | 15%                                     |
| 2 | Second written mid-term exam                         | 12                        | 15%                                     |
| 2 | Presentation, class activities, and group discussion | Every<br>week             | 10%                                     |
| 3 | Homework assignments                                 | After<br>every<br>chapter | 10%                                     |
| 4 | Practical exam                                       | 15                        | 10%                                     |
| 5 | Final written exam                                   | 16                        | 40%                                     |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

#### E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

1. 6-office hours per week in the lecturer schedule.

2. The contact with students by e-mail, mobile, office telephone and website.

# **F. Learning Resources and Facilities**

#### **1.Learning Resources**

| Required Textbooks                             | Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs,<br>Koen Langendoen, "Modern Compiler Design", ISBN 978-1-4614-<br>4698-9, Springer New York Heidelberg Dordrecht London, 2 <sup>nd</sup> 2012. |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Essential References<br>Materials              | https://www.isi.edu/~pedro/Teaching/CSCI565-Spring16/                                                                                                                                                           |  |
| Electronic Materials https://www.coursera.org/ |                                                                                                                                                                                                                 |  |
| Other Learning<br>Materials                    | Video and presentations that are available with the instructor.                                                                                                                                                 |  |

#### 2. Facilities Required

| Item                                                                           | Resources        |
|--------------------------------------------------------------------------------|------------------|
| Accommodation                                                                  | Class Rooms      |
| (Classrooms, laboratories, demonstration                                       | Computer Labs    |
| rooms/labs, etc.)                                                              | □ Library        |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.) | Smart Board, C++ |
| <b>Other Resources</b>                                                         | None             |

| Item                                                                              | Resources |
|-----------------------------------------------------------------------------------|-----------|
| (Specify, e.g. if specific laboratory equipment is required, list requirements or |           |
| attach a list)                                                                    |           |

# **G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues     | Evaluators     | <b>Evaluation Methods</b> |
|--------------------------------|----------------|---------------------------|
| Analysis of students' results. | Teaching Staff | Direct                    |
| Observation during work.       | Teaching Staff | Indirect                  |
| Students' evaluations.         | Teaching Staff | Indirect                  |
| Colleagues' evaluations.       | Peer Reviewer  | Direct                    |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

# **H. Specification Approval Data**

| Council / Committee | DEPARTMENT COUNCIL |
|---------------------|--------------------|
| Reference No.       |                    |
| Date                |                    |