

Course Specifications

Course Title:	Computational Methods
Course Code:	CSI 444
Program:	Computer Sciences & Information Technology
Department:	Computer Science and Information
College:	Science at Al-Zulfi
Institution:	Majmaah

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 3	
2. Course type	
a. University College Department	Others
b. Required Elective	
3. Level/year at which this course is offered: Level 7	
4. Pre-requisites for this course (if any): CSI 314 Database	
5. Co-requisites for this course (if any): Nil	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	44	80 %
2	Blended	3	5 %
3	E-learning	3	5 %
4	Correspondence	3	5 %
5	Other	3	5 %

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours	
Conta	Contact Hours		
1	Lecture	30	
2	Laboratory/Studio	10	
3	Tutorial	15	
4	Others (specify)	5	
	Total	60	
Other	Other Learning Hours*		
1	Study	10	
2	Assignments	20	
3	Library	10	
4	Projects/Research Essays/Theses	20	
5	Others (specify)	0	
	Total	60	

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

The current course provides powerful understanding and manipulation of what is called approximate/numerical solutions. The exact solution, in many practical cases, is not only difficult to be reached, but it may be impossible to find it. Therefore it was the need to look for effective algorithms to establish these stable, and convergent approximate solutions. These algorithms will handle important several topics concerned with: Numerical Differentiation, Root location (Bracketing Methods, Opened Methods), Numerical Integrations, Numerical Solution of Linear Systems of Equations, Curve Fitting, Interpolation, Numerical Solution of Ordinary and Partial Differential Equations.

2. Course Main Objective

3. Course Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

	CLOs	Aligne d-PLOs
1	Knowledge:	
1.1	Explain the mathematical theory underlying numerical methods for solutions of the concerned problems.	
1.2	Match correctly the appropriate techniques of solutions with the concerned problems.	K1
1.3	Categorizing problems into appropriate complexity classes.	
2	Skills :	
2.1	Identify the essential mathematics relevant to computer science	
2.2	Perform error and stability analysis to investigate applicability of numerical methods for solving the concerned problems.	S 1
2.3		
2.4	Develop an appropriate numerical scheme.	
3	Competence: الكفاءات	
3.1	Illustrate a plan to attack a problem and solve it numerically	
3.2	Use the available commercial software systems/packages in application to the suggested solution	
3.3	Choose suitable algorithms and software to suit specific problems.	C6
3.4	Analyze the solution's sensitivity due to small changes in the problem's parameter.	
3.5	Cooperative working in groups inside the class, or/and efficient participation in take-home-assignments.	
3.6	Allow them to feel "involved" in the discussion, rather than simply being outside spectators.	
3.7	Video conferencing is used help the student to skip the fear of scientific interaction.	

C. Course Content

No	List of Topics	Contact Hours
1	Introduction: What, Why, How are Computational Methods. Stopping Criteria. Accuracy and Precision. Errors: definition, sources, analysis	
2	 Root Location: 2.a Bracketing Methods: Graphical, Bisection, False Position. Error Estimation Analysis. 2.b Opened Methods: Newton. Secant. Iterative. Convergence and divergence Analysis. 	10
3	Numerical Solution of Linear Systems of Equations: Gauess-Jaccobi Algorithm. Gauess-Seidel Algorithm. Convergence and divergence Analysis.	6
4	Curve Fitting : Empirical Formulae: Selected Points Method, Average Method, Least Square Method.	6
5	Interpolation: Taylor's Polynomial of nth Order and its remainder/error term. Lagrange Polynomial of nth Order and its remainder/error term. The Divided Differences. Symbolic Difference Operators. Equidistant Interpolation: One-Side Interpolation, Central Interpolation, and Double-Sided Interpolation.	12
6	Numerical Solutions of ODE: Maclurin's and Taylor's series. The Picard's Methods. The Euler's Methods. Runge-Kutta Methods: of Order 2, of Order 3, of Order 4	10
7	Numerical Solutions of PDE: Finite Difference Approximation to Partial Derivatives. Formulation of the Finite Difference Techniques for One Dimensional Diffusion Equation: Explicit and Implicit Techniques. Formulation of the Finite Difference Techniques for the Elliptic Equations-Two Dimensional Equation .	10
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods Live Learning: Lecture, PowerPoint slides and discussion

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Explain the mathematical theory underlying numerical methods for solutions of the concerned problems.	• Direct Teaching: Lectures, PowerPoint slides and discussion.	 Homework tasks Quiz
1.2	Match correctly the appropriate techniques of solutions with the concerned problems.	 Aimed Teaching Discovery and Oral Questions. 	MidtermsFinal Exam

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.3	Categorizing problems into appropriate complexity classes.		E-learningInternet searchOral Exam
2.0	Skills		
2.1	Identify the essential mathematics relevant to computer science		
2.2	Perform error and stability analysis toinvestigateapplicabilitynumericalmethodsforsolvingconcerned problems.	Indirect Teaching: Brainstorming - Free Discovery – Inquiry	 HW Exercises Lab Exam Oral Exam
2.3	Analyze and evaluate the solution's Efficiency and effectiveness.	inqui y	- Presentations
2.4	Develop an appropriate numerical scheme.		
3.0	Competence		
3.1	Illustrate a plan to attack a problem and solve it numerically		
3.2	Use the available commercial software systems/packages in application to the suggested solution		
3.3	Choose suitable algorithms and software to suit specific problems.		Introduce group
3.4	Analyze the solution's sensitivity due to small changes in the problem's parameter.	Course Project: (Work group) critical thinking and	project and case study approaches to enable students
3.5	Cooperative working in groups inside the class, or/and efficient participation in take-home-assignments.	ability to seek solutions.	to have an experience in problem solving
3.6	Allow them to feel "involved" in the discussion, rather than simply being outside spectators.		situations.
3.7	Video conferencing is used help the student to skip the fear of scientific interaction.		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework 1	2	2%
2	QUIZ 1	3	5%
3	Homework 2	4	2%
4	QUIZ 2	5	5%
5	Midterm 1	6	10%
6	Homework 3	7	2%
7	QUIZ 3	8	5%
8	Homework 4	9	2%
9	QUIZ 4	10	5%
10	Midterm 2	11	10%
11	Project Evaluation	14	12%
12	Final Exam	16	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Determine meeting appointments for the weak' students to solve their problems and give them academic advices.
- One office hour daily
- Dealing a workshops.
- Motivate students

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Resources		
Required Textbooks	Steven C. Chapra, "Numerical Methods For Engineers", McGraw Hill, 2002.	
 Richard Hamming, "Numerical Methods for Scientists an Engineers", Dover Publications, 2nd Edition, April 25, 2012. Eugene Isaacson, Herbert Bishop Keller; "Analysis of Numerical Methods"; Dover Publications; Reprint edition (March 29, 2012) - ASIN: B00CWR4NW Richard L. Burden, J. Douglas Faires; "Numerical Analytic Cengage Learning; 9th Edition; August 9, 2010; ISBN-10: 0538733519 – ISBN-13: 978- 0538733519 Steven C. Chapra, "Numerical Methods For Engineers", McGraw Hill, 2002 		
Electronic Materials	https://ep.jhu.edu/programs-and-courses/625.611-computational- methods https://apps.ep.jhu.edu/course-homepages/3518-625.611- computational-methods-sorokina	
Other Learning Materials	Matlab toolboxes	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom - Laboratory
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show – Smart Board

Item	Resources	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Matlab software – Python Programming	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
1. Questionnaires (course evaluation) filled by the students and acquired electronically by the University	Students	Indirect Assessment
 Students-faculty management meetings Departmental internal review of the course. 	Department Council	Questionnaires
4. Discussion with the industrial partners to enhance the courses in order to meet their needs.	Stockholders	Meetings
 Midterms and Final Exam Project Evaluation 	Course Coordinator Staff	Direct Assessment

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	