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1. Introduction To Graphs




What is a 6raph ?

A graph consists of A graph consists of two finite sets (sets
having finitely many elements) :

0 Set "V" of points called "vertices" (singular is vertex)
0 Set "E" of connecting lines/arcs/line segments called
“edges’ .

Such that:

each edge connects two vertices (start and end at vertices), and
these two vertices are called the “endpoints” of the edge. An
edge that starts and ends at the same vertex is called a loop.
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Mathematically : G=6(V,E)
N.B.
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Vertices Are Denoted By :
0 Numbers: 1,2, 3, ..
0 Letters:a,b,c,vl,ve, ..




Practical Examples of Graphs
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Practical Examples of Graphs

Social Networks



A Simple Graph?

» Asimple graph contains no loop or parallel edges
o No loop = Each edge connects two different vertices
o No parallel = No two edges connect the same pair of vertices

» Example of simple graph and not a simple graph
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simple graph not a simple graph not a simple graph
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Multigraphs & Psuedographs

» Multigraphs ) —
o Graph that may have
multiple edges connecting
the same vertices. & &
a
(&)
» Psuedographs “(—¢"
0 Graph that may include N
loops, and  possibly “

multiple edge connecting
the same vertices.




A Directed 6Graph

» A graph directed (or digraph) (V, £) consists of
o V- anonempty set of Vertices (or nodes) = represents by point
o £-aset of directed Edges = represents by line segments or curve

= Each directed edge associated with an ordered pair of vertices (v, v),
which said to start at vand end at v,

» Hence:

A digraph is a directed one which consists of a finite set
of points, called vertices, together with a finite set of
directed edges, each of which joins a pair of distinct
vertices. Thus a digraph contains no loops. Moreover,
the directed edge P; P; is different from the edge P, P, .
Hence, a digraph G = G(E, V) is a graph in which each
edge "e = (i, j)" has a direction from its “initial point i" to
its "terminal point j“. Two edges connecting the same
two points "i, " are permitted provided that they have
opposite directions, i.e. they are (i, j) and (§, i).

9




A Directed 6raph

Simple directed graph - a directed graph with no loops and no |
multiple directed edges

Directed multigraph - a directed graph with multiple directed
edge
Mixed graph - a graph with both directed and undirected edges

Example of a directed graph

1 2

10




A Directed 6Graph

Directed Graphs Are Essential In Important
Applications, such As:
[ Pipelines networks .

]

0 Producer-consumer relations .

0 Traffic nets of one-way streets .
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0 Flows of computations in a computer .

] Sequences of jobs in construction work .
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Summary:
Types of 6raph & its Structure

Type Edges Multiple Edges Loops
Allowed? Allowed?
Simple Graph Undirected No No
Multigraph Undirected Yes No
Psuedograph Undirected Yes Yes
Simple Directed Directed No No
Graph
Directed Directed Yes Yes
Multigraph
Mixed Graph Directed and Yes Yes
Undirected




Check Point

For each of the following graph,
* Determine the type of graph
* Find the number of vertices and edges

* If the graph is a not simple undirected graph, find
a set of edges to remove to make it simple graph.

b
a a /\ c
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How to Graph a Model

e When we build a graph model, we need to make sure that
we have correctly answered three key questions about the
structure of a graph as following:

1. Are the edges of graph undirected or directed or both?

2. If the graph is undirected, are multiple edges present
that connect the same pair of vertices?

If the graph is directed, are multiple directed edges
presents?

3. Are loops present?

14




Examples of Graph Models
Modeling Relationships Using Graphs

I. Modeling Computer
Networks Using Graphs

KB

» A network is made up of data KT
centers  (represents the i
location by point) and
communication links between KTN
computer (represents the
links by line segments). M

JB
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II. Modeling Relationships
Using Graphs

Modelmq Konigsberg With A Graph

The first paper in Graph Theory was written by Euler in 1736 when he
settled the famous unsolved problem of his day, known as the Konigsberg
Bridge Problem . Konigsberg (55.2° North lattitude and 22° East longitude)
is now called Kaliningrad and is in Lithuania which recently separated from
U.S.S5.R.

The two islands "A” and "B" and the two banks "L” and "R"” of the Pragel
river are connected by seven bridges as shown above. A The problem was
to start from any one of the land areas, walk across each bridge exactly
once and return to the starting point.

Euler proved that this problem has no solution. Euler abstracted the
problem by replacing each land area by a point and each bridge by a line
joining these points.

The Konigsberg bridge problem is the same as the problem of drawing the
graph representing it without lifting the pen from the paper and without
retracing any line and coming back to the starting point.

16



IT. Modeling Relationships
Using Graphs

Modeling Konigsberg With A Graph

Right Bank &
0 g W"‘._’.J".\;'l'}‘ o
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Check Point

The city of Meftroville is located on both banks and
three islands of the Metro River. The Figure show
down that the town's sections are connected by five
bridges. Draw a graph that models the layout of

Metroville. |
North Metroville

A e~

.....

South Metroville

18




ITI. Modeling Bordering Relationships
For the New England States

The map in Figure (a) shows the New England states. Figures (b) & (c) show
a graph that models which New England states share a common border.
Vertices to are used to represent the states and edges to represent
common borders.

ME ME

VT VL
* NH NH

e MA MA

CTe *RI d i RI

(b) (c)1o




Check Point

* Create a graph that models the bordering
relationships among the five states shown below.




IV. Modeling Connecting Relationships
In A Floor Plan

The floor plan of a four-room house is shown in figure (a). The
rooms are labeled A, B, C, and D. The outside of the house is labeled
E. The openings represent doors. A graph that models the connecting

relationships in the floor plan is given in figure (c). Vertices
represent the rooms and the outside. Edges represent the
connecting doors.
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Check Point

* The floor plan of a four-room house is shown below.

The rooms are labeled A , B , C, and D .The outside of

the house is labeled E. Draw a graph that models the
connecting relationships in the floor plan.




V. Modeling Walking Relationships
For A Neighbourhood's Streets

* A mail carrier delivers mail to the four-block neighborhood shown in Figure (a). He
parks his truck at the intersection shown in the figure and then walks to deliver mail
to each of the houses. The streets on the outside of the neighborhood have houses on
one side only. By contrast, the interior streets have houses on both sides of the
street. On these streets, the mail carrier must walk down the street twice, covering
each side separately. Figure (c) shows a graph that models the streets of the
neighborhood walked by the mail carrier. Vertices are used to represent the street
intersections and corners. One edge is used if streets must be covered only once and
two edges for streets that must be covered twice.

A B
e o
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VI. Modeling The Structure of
Mazes walio

» Graphs can be used to clarify the structure of mazes. Vertices represent
entrances to the maze and points in the maze where there is either a dead
end or a choice of two or more directions to proceed. Edges show how these
points are connected. For example, here is the 1690 design for the hedge
maze at Hampton Court in England and a graph that clarifies its structure.
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Exercise Set

Pittsburgh

1 e
1. The graph models the baseball '
schedule for a week. The St Louis New York
vertices represent the teams.
Each game played during that
week is represented as an edge
between fwo teams. Use the (yicago
information in the graph to solve
the following Exercises.

Montreal

Philadelphia

i. How many games are scheduled for Pittsburgh during the week? List the
teams that they are playing. How many times are they playing each of
these teams?

ii. How many games are scheduled for Montreal during the week? List the
teams that they are playing. How many times are they playing each of
these teams?

iii. Do the positions of New York and Montreal correspond to their
geographic locations on a map? If not, is the graph drawn incorrectly?
Explain y our answer . 25




Exercise Set 1.

2. In the following exercises, draw two equivalent graphs for each
description.

a. The vertices are A ,B,C, and D .The edges are AB, BC, BD, €D and CC.
b. The vertices are A, B, C, and D. The edges are AD, BC, DC, BB, and DB.

3. Eight students form a math homework group. The students in the group
are Zeb, Stryder, Amy, Jed, Evito, Moray, Carrie, and Oryan. Prior to
forming the group, Stryder was friends with everyone but Moray. Moray was
friends with Zeb, Amy, Carrie, and Evito. Jed was friends with Stryder,
Evito, Oryan, and Zeb. Draw a graph that models pairs of friendships among
the eight students prior to forming the math homework group.

4. An environmental action group has six members A, ,B, C, D, E, and F. The
group has three committees: The Preserving Open Space Committee (B, D,
and F), the Fund Raising Committee (B, C, and D), and the Wetlands
Protection Committee (A, C, D, and E). Draw a graph that models the
common members among committees. Use vertices to represent committees
and edges fo represent common members.

26




Exercise Set 1.

5. Draw a graph that models the layout of the cities shown in maps
i-ii. Use vertices to represent the land masses and edges to

represent the bridges. i ;
The City of Wisdomvill The City of Gothamville

North Wisdomville " North Gothamville

South Gothamvilie

South Wisdomville

27



Exercise Set 1.

6. In the following Exercises , create a graph that models the bordering
relationships among the states shown in each map. Use vertices to
represent he states and edges to represent common borders.
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Exercise Set 1

7. In Exercises 15-18, draw a graph that models the connecting relationships in

each floor plan. Use vertices to represent the rooms and the outside, and edges to
represent he connecting doors.
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Exercise Set 1.

8. Draw a graph to clarify the underlying structure of each of the following mazes. Points that
are entrances or dead ends have been labeled, but you will need to label points where there is
a choice of two or more directions to proceed (b)

In
(a) In A E
A
D
_ | |c|p | \
B

C

B

(¢) (d) 4
E
D
C D B
3 T
30




Exercise Set 1.

9. In Exercises 9.a - 9.b, a security guard needs fo walk the streets of the
heighborhood shown in each figure. The guard is o walk down each street once,
whether or not the street has houses on both sides. Draw a graph that models the
neighborhood. Use vertices to represent the street intersections and corners. Use
edges to represent the streets the security guard needs to walk.




2. Graph Terminology




+ Initial & Terminal Vertex

- Walks & Paths & Circuits

« Cut vertex

Basic Graph Terminology

-+ Adjacent Vertices and
Incident/a<3lg/a=Edges

* Degree: Isolated & Pendant _gleo& Even & Odd
+ Degree/In-Degree/Out-Degree

» Connected & Disconnected Graphs
* Bridge/cut edge




Adjacent ,9lwo Vertices and
Incident J>lgio Edges

Two vertices v and v in an undirected graph & are called
adjacent (or neighbors) in & if v and v are endpoints of an
edge of &. (or if there is at least one edge connecting them).
It is helpful to think of adjacent vertices as connected
vertices

If the edge e is associated with {v, v}, eis called incident with
the vertices vand v. (e connects v and v). Also, The vertices
u and v are incident wbaxlgie with the edge e.

Example: b
- aand bare adjacent.
- aand ¢ not adjacent. €2 &
é1
- g, isincident with aand 5. a




Degree, Isolated Jg=e and Pendant $Jlc
Vertices

For Undirected Graph

The degree of a vertex in an undirected graph is the
number of edges incident 3.>lgioll with it.

A loop at a vertex contributes twice to the degree of that
vertex (since it connects the vertex to itself, that loop
contributes 2 to the degree of the vertex)

The degree of the vertex vis denoted by deg (v).

A vertex of degree zero is called isolated. (not adjacent to
any vertex)

A vertex is pendant/aslso iff it has degree one.

Example:

- deg(a)=3,deg(H)=2

- deg (¢) =1, so vertex cis pendant
- deg (d) = 0, so vertex dis isolated

D




Even and Odd Degree

* For Undirected Graph

A vertex with an even number of
edges attached to it is an even
vertex.

For example, in the Figure shown in
R.H.S., vertices E, D, and C are
even.

A vertex with an odd Number of
edges attached to it is an odd
vertex.

In the Figure shown in RH.S,
vertices A and B are odd.

Degres is 5.
A

Degree is 4

with the loop
contributing _.
degree 2, D ¢

Degree is 2, Degree is 2.

Degree is 3.

36




Check Point

For each of the following graph,
* Find the degree of each vertex
+ Identify all the isolated and pendant vertices

b
YA NI e
,,><Q><d ;

Fig. 3

37



Theorem Involving Degrees

1. The Handshaking Theorem:
Let & = (V, £E) be an undirected graph with e

edges. Then %0 — Zdeg (V)

veV

This theorem also applies if multiple edges and
loops are present.

Example: How many edges are there in a graph
with 10 vertices each of degree 6?

38




Initial and Terminal Vertex
For Undirected Graph

When (u, v) is an edge of the graph & with a directed edge
from the vertex u to the vertex v, vis said to be adjacent
to vand vis said to be adjacent from w.

The vertex v is called the initial vertex of (v, v), and vis
called the terminal or end vertex of (v, v).

The initial vertex and terminal vertex of a loop are the
same.

+ Example
- ais adjacent to b

- bis adjacent to ¢ b
- cis adjacent froma (b) 92//\\93‘
- Vertex ais initial vertex of (a, b) -

- Vertex b is terminal vertex of (a, b) a c

39




In-Degree and Out-Degree
For Undirected Graph

For directed graph, the in-degree of a vertex v, denoted by  deg™ (v), is the
number of edges with v as their terminal vertex.

For directed graph, the out-degree of a vertex v, denoted by deg* (v), is the
number of edges with v as their initial vertex.

Loop at a vertex contributes 1 to both the in-degree and the out-degree of this
vertex.

The summation: Zdeg Zdeg —|E| holds

veV veV

Example:

-The in-degrees in G are:
*deg (@)=1, deg (b)=1
deg (¢)=3 , deg (d)=2

-The ouT de rees in éar'e

(a) =1 , deg"(H)=4
deg (o)=1 , deg+ (d)=1

D deg (v)=) deg" (v)=|E| =7

veV veV 40




Check Point

r |

Use each of the given two graphs to answer the following:
Find the degree of each vertex in the graph.
Identify the even vertices and identify the odd vertices.
Which vertices are adjacent to vertex A and vertex E?

Which vertices are adjacent o vertex D and vertex F?

41




Check Point

For each of the following directed graph, Find
the in-degree and out-degree of each vertex

%X

Fig. 3




Walks & Paths & Circuits

Walk:

A walk in a graph is a sequence of vertices, each
linked to the next vertex by specified edge of
the graph.
We can think of a walk as a route with a pencil without lifting the
pencil from the graph. M > S >F—>S—>BandF->M ->D > E

are walks; M —> D — S is not a walk, however since there is no edge
between D and S.

G B
D =
E
Y
M

43




Walks & Paths & Circuits

A path in a graph is a sequence of adjacent vertices and the
edges connecting them. Although a vertex can appeal on the
path more than once, an edge can be part of a path only once. A
path along the given graph, is shown in red. You can think of this
path as movement from vertex A to vertex B to vertex D to
vertex E. We can refer to this path using a sequence of
vertices separated by commas. Thus, the path shown below is
describedby A, B, D, E.

A path ina

Path starte at

gr‘C(Ph iS A vertex A.

Path ends st
vertex .

walk that - 4
uses no 2 ’
edge more

than once.

( 44




Walks & Paths & Circuits

A circuit is a path that begins and ends at the same vertex. In the
figure shown below path given by B, D, F, E, B, is a circuit. Observe
that every circuit is a path. However, because not every path ends
at the same vertex where it starts, not every path is a circuit.

Circuit starts and
ends at vertex /5.

s

A -

( - )

45




Walks & Paths & Circuits

- Example:
- a,d ¢, f, eisapath
- b, c f e bisacircuit
- d, e, ¢, ais a not a path
- a, b, e d a bisnotapath
a b C
d e f

» Paths in an Acquaintanceship 8, Graphs

- There is a path between two people if there is a chain
of people linking these people, where two people
adjacent in the chain know one another.

46




Check Point
T

Use the given graph to answer the following:

1.

Use vertices to describe two paths that start at vertex A
and end at vertex D.

Use vertices to describe two paths that start at vertex B
and end at vertex D.

Which edges shown on the graph are not included in the
following path: E, E, D, C, B, A?

Which edges shown on the graph are not included in the
following path: E, E, D,C,A, B?

47




Check Point

iy
A - v
C o __—{_‘j__:}
: ™ - -y
= }/ —7\\ F o

Use the given graph to answer the following:

1. Use vertices to describe two paths that start at vertex A (B)
and end at vertex F.

2. Use vertices to describe a circuit that begins and ends at
vertex F (6).

3. Use vertices to describe a path from vertex H to vertex E,
passing through vertex I , but not through vertex G .

4. Use vertices to describe a path from vertex A to vertex T,
passing through vertices B and G, as well as through the loop.

5. Explain why the sequences A, C, D, E, D and 6, F, D, E, D are
not paths.

6. Explain why the sequences A, C, D, 6 and HI, F, E are not
paths.

48



Walks & Paths & Circuits

When planning your trip around the Upper Midwest Region, it
would be useful the length to know the length of time the bus ride
takes. We might write the time for each bus ride on the graph as

shown below

2 h 35 min

B
4 h

S
| h 50 min

G

Ve D 6h35mn
| h 35 min -

F

E

2 h 40 min
Ah 15 mn

5 h 35 min Y

G h 35 min

M

A graph with numbers on the edges as shown above is called a
weighted graph. The numbers on the edges are called wgights.




Walks & Paths & Circuits

Summary
The relations among Walks, Paths

and Circuits are shown below

Walks

A path of length n is a
sequence of n edges that
begins at a vertex of a
graph and fravels from
vertex to vertex along
edges of the graph.

The path is a circuit (or
cycle) if it begins and
ends at the same vertex.




Illustrative Example

- Using the given graph classify each of the
following sequences as a walk, a path, or a circuit.

() E->C—>D—E

(b) A-C—>D—->E—-B—>A B D
()B>D—>E—->B-C

(dJA-B—->C—>D—>B->A z

Walk Path Circuit
(a) No (no edge E to C) No* No*

(b) Yes Yes Yes

(c) Yes Yes No

(d) Yes No (edge AB is used twice)  No**

* If a sequence of vertices is not a walk, it cannot possibly be either a path
Or @ circult,
#* 1 a sequence of vertices is not a path, it cannot possibly be a circuit, since
a circuit is defined as a special kind of path. ..




Check Point

Does each of the following lists of vertices form a

path in the following gr'aph7 Which path are simple?

Which are circuits? What are the lengths of those
that are paths?

a b c

d Figur'el d Figu;'e 2 ¢
i) a e b, c b i) a b, c d a
i) a e a d b, c a i) a d d b, c, b
iii) e, b, a, d b, e i) d b, c, b

iV) cl bl dl al el c iV) Cl al b: d 52



Connzcrzd Componzint

+ A connected component of a graph & is a connected
subgraph of & that is not a proper subgraph of
another connected subgraph of .

+ A connected component of a graph G is a maximal
connected subgraph of G.

* A graph & that is not connected has two or more
connected components that are disjoint and have & as
their union.

Example The graph & is the union of three

disjoint connected subgraphs &1,
&2, and 63. These subgraphs are

g h the connected components of 6.
b
® f @ ® h e
a c d [\ e
C=

Gl C d s G3

f




) 9 2 el
J / -
Cneck roinT
How many connected components does each of the
following graphs have?

C

a b
a b f
W Figure W
Figure 1
d e ¢ d 4

Nt xx

Figure 3

Flgur'e 4 e




Connectedness a.lul sl in
Undirected 6raphs

* An undirected graph is called connected if there is a
path between every pair of distinct vertices of the

” b graph.

a o (C
¢ b [ €
A ]

d f
g e
Figure 1 Figure 2
The graph is Connected since The graph is not
for every pair of distinct connected since there is
vertices there is path no path between vertices

between them. aand d

55



Connected & Disconnected 6raph

The words connected and disconnected are used to describe graphs.
A graph is connected if for any two of its vertices there is at least
one path connecting them.

Thus, a graph is connected if it consists of one piece. If a graph is
not connected it is said to be disconnected. A disconnected graph is
made up of pieces that are by themselves connected. Such pieces
are called the components of the graph. See the figures below.

Connected Graphs Disconnected Graphs
: 7
B D | B C B D B (
9
A / : ; A W
A T A E YD
¢ (
f F
G G
(a) (h) ( C) ( d)




Check Point

Determine if each of the following is a connected graph.

><7 LN

Figure 2

Figure 1

C d e
€ o

Figure 3

57



Cut/Bridge Edges

A cliche' a.w\MS| says that if you burn a bridge behind you, you'll
never get back to where you were. This cliché tells us something
about the word bridge in graph theory. A bridge is an edge that if
removed from a connected graph would leave behind a disconnected
graph.

If edge BD were removed from Figure, shown below, vertex D would
be isolated from the rest of the graph, leaving behind a
disconnected graph. Thus BD is a bridge for the given graph.

B [ B ]

C
A cut edge in a graph is an edge whose removal disconnects a compo-
nent of the graph 58




Cut/Bridge Edges

If edge BE were removed from the Figure shown below, the graph,
leaving behind become a disconnected graph. As shown by the
resulting two separated components. Thus BE is a bridge for the
given graph. 5
B C B {

3

E f A E I
> F D F
Cr G

* An Edge is a cut edge (bridge) when the removal of this
edge produces a subgraph that is not connected.




Cut/Bridge Edges

The graph in RHS has only one component, so we must
look for edges whose removal would disconnect the E
graph.

DE is a cut edge; if we removed this edge, we would
disconnect the graph into two components, obtaining

graph (a) .

Also, HG is a cut edge; if we removed this edge, we
would disconnect the graph into two components (one F
of which would be the single vertex H), obtaining graph

b
(b) B C G ®H

None of the other edges is a cut edge; we could remove anyone of the other edges and still
have a connected graph (that is, we would still have a path from each vertex of the graph to
each other vertex). For example, if we remove edge GF, we end up with a graph that still is
connected




Check Point

Figure (b)
i

A Figure (a)

I
Use the graph (a) to answer the following:

1. Explain why edges CD and DE are bridges

2. Identify an edge on the graph other than edges CD and DE
that is a bridge.

Use graph (b) to answer the following:

1. Identify three edges that are bridges. Then show the
components of the resulting graph once each bridge is removed.
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Check Point

Identify all cut edges in the graphs 1-3. If there are none, say so.

A Figure 2. |
F M .
I
= =
Figure 3. —
1 ==
2 =

F 1551



Some Special Classes
of a Simple 6raph

* Complete Graph
*Cycles
* Wheels




Complete Graph

+ The Complete Graph on n vertices, denoted
by Kn, is the simple graph that contains
exactly one edge between each pair of
distinct vertices.

 Example: the graph Knfor 1< n<5.

AKX

K1 K2 K3 Ka K5




Cycles

+ The Cycle ¢n, n> 3, consists of nvertices 1,
v2, ... vnand edges {1, 2}, {2, v3}, ..., {vn-
1,vn} and {vn, Vv1}.

-+ Example: the ¢nfor 3<n<6.

ALOO




Wheels

- The Wheel W, n > 3, is obtain when we add an
additional vertex (usual ly at the center) to the cycle
¢» and connect this new vertex to each of the n
vertices in &, by new edges.

o
N
(9)
X
>
O
L
-
m
X
=
2
O
—
o
(9]
<

+ Example: the W, for 3<n<6.

A X &6
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Applications of Special Types of 6raph

Local Area Network
* Tllustrate the connection
between various
computers and devices
- Star topology : Kin

- All devices connected to a
central control device
* Ring topology : n Cycles
(Ch)

+ Each device is connected
to exactly two others

* Hybrid fopology : star +
ring
- Redundancy makes the
network more reliable 7




Subgraph

* A subgraph of a graph &= (V, £) is a graph H =
(W, F), where W< Vand Fc E.

* A subgraph H of & is a proper subgraph of & if
Hz G

K5 a few subgraph of K5,




Union of 6raphs

* The Union of two simple graphs & = (i, &) and & =
(2, &) is the simple graph with vertex set i U |5
and edge set & U &.

* The union of 61 and & is denoted by &1 U 6 .

a. b. c a /\s a. b c
d e d f d e f
Gl ng

€il G2



Check Point

Find the union of the following graphs

b
a (o a (o
Figure 1 .
Figure 2
f d
e e
b b
®
Figure 3 d
a c a /\.c

Figure 4
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Exercise Set 2.

1. 6. For Exercises 1-6, determine how many vertices and how
many edges each graph has

1. ¢ o 2.

% X
@ X




Exercise Set 2.

- 10. For Exercises 7 -10, refer to the graphs shown in Exercises
1 4 For each of these gr'aphs find the degree of each vertex in the
graph. Then add the degrees to get the sum of the degrees of the
vertices of the graph. What relationship do you notice between the
sum of degrees and the number of edges? Determine the cut edges
if there are any?




Exercise Set 2.

11. - 16. For Exercises 11-16, determine whether the graph is
connected or disconnected. Then determine how many components
the graph has.

O0q L7 80
LT —+

15 16




Exercise Set 2.

17. - 20. For Exercises 17 -20, use the theorem that relates
the sum of degrees to the number of edges to determine the
number of edges in the graph (without drawing the graph).

17. A graph with 4 vertices, each of degree 3.

18. A graph with 8 vertices, each of degree 4.

19. A graph with 5 vertices, three of degree 1, one of degree
2, and one of degree 3.

20. A graph with 8 vertices, two of degree 1, three of degree
2, one of degree 3, one of degree 5, and one of degree 6.
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Exercise Set 2

21.-23. Referring to the given gr'aph
21. Which of the following are walks in the
graph? If not, why not?

i. D—oE i. BoDo>F—>B->D
iii. A>oB—>C iv. EoF>A->SE
v. B—>oA->D vi > B—->C—>B

22. Which of the following are paths | 23. Which of the following are
in the graph? If not, why not? circuits in the graph? If not, why not?

i. B -D—oE—-F . C -oF-oE->D->C

i. b >F->B->D i. 6 > F>D->E->F
iii. B>C->D—->B—A ii. A>B>C>D>E-F
v. A->BoE-F-A iv. A—>B>D->E->F->A
v.. B >D>F->B->D

v. F 5 D>F->E->D->F
vi D >E->F—->6->5F->D
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Exercise Set 2.

B E
24. - 25. referring to the given —o]
graph.

24. Which of the following 25. Which of the following
are walks in the graph? If are paths in the graph? If
not, why not? hot, why not?
i. D-—oF . C—o>A
ii. Io>-6->J i. Ao>B->C
i, Io-6->J->1 ii.h. C>A—>D->E
v. Fo6->J—->H->F v. J>o6->I->6->F
v BoA->D->F-—->H v DoE—->I->G->F
vi B> A->D->E->D vi C>A->D->E->D

—->F->H —->A—>B
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Exercise Set

26. - 31. Exercises 26 - 31
refer to the following graph. In A
each case, determine whether
the sequence of vertices is (i) a
walk, (ii) a path, (iii) a circuit in
the graph. . B3

26A—>B->C
27T.A>B->C—>D-A
28A—>B—->C—>D-—>E C
29A>B>A—>C->D—>A

30, >A->B—>C—>D>A—E

31l A-B—>C—>A->D>C—oE->A




Exercise Set 2.

32.- 37. For each of Exercises 32-37, determine whether the
graph is a complete graph. If not, explain why it is not comple're

D <
XA 8D




Exercise Set 2.

38. Students from two schools compete in chess. Each school has a
team of four students. Each student must play one game against
each student on the opposing team. Draw a graph with vertices
representing the students, and edges representing the chess games.
How many games must be played in the competition?

39. A chess master plays six simultaneous games with six other
players. Draw a graph with vertices representing the players and
edges representing the chess games. How many games are being
played?

40. At a party there were four males- Tom, Joe, Chris, and Sam-and
five females-Jennifer, Virginia, Mitzi, Karen, and Brenda. During the
party each male danced with each female (and no female pair or male
pair danced together). Draw a graph with vertices representing the
people at the party and edges showing the relationship "danced
with." How many edges are there in the graph?
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Exercise Set 2.

41. A lawyer is preparing his argument in a libel case. He has
evidence that a libelous rumor about his client was discussed in
various telephone conversations among eight people. Two of the
people involved had four telephone conversations in which the rumor
was discussed, one person had three, four had two, and one had one
such telephone conversation. How many telephone conversations
were there in which the rumor was discussed among the eight people

42. Draw a graph with vertices representing the vertices (the
corners) of a cube and edges representing the edges of the cube. In
your graph, find a circuit that visits four different vertices. What
figure does your circuit form on the actual cube?

43. Draw a graph with vertices representing the vertices (or
corners) of a tetrahedron and edges representing the edges of the
tetrahedron. In your graph, identify a circuit that visits three
different vertices. What figure does your circuit form on the actual
tetrahedron
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Exercise Set 2.

41. Mary, Erin, Sue, Jane, Katy, and Brenda are friends at college.
Mary, Erin, Sue, and Jane are in the same math class. Sue, Jane, and
Katy take the same English composition class.

(a) Draw a graph with vertices representing the six students and
edges representing the relation "take a common class."

(b) Is the graph connected or disconnected? How many components
does the graph have?

(c) In your graph, identify a subgraph that is a complete graph with
four vertices.

(d) In your graph, identify three different subgraphs that are
complete graphs with three vertices. (There are several correct
answers.)

42. Draw a graph whose vertices represent the faces of a cube and
in which an edge between two vertices shows that the corresponding
faces of the actual cube share a common boundary. What is the
degree of each vertex in your graph? What does the degree of any
vertex in your graph tell you about the actual cube? .




3. 6Graph Representation
And Graph Isomorphism




Representing 6raphs
On Computers

- Adjacency/Incidence List
- Specify the vertices that are adjacent to each
vertex of the graph

- Adjacency/Incidence Matrix
- Represents graph by a matrix based on the
adjacency of vertices

* Representation Matrix
- Represents graph by a matrix based on the
incidence of vertices and edges.
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Adjacency/ Incidence
List (Undirected 6raph)

. Adjacency List
+ Specify the :
vertices that are Vertex Adjacent
adjacent to each Vertices
vertex of the graph a b c e
b
b a
a C C a, d, e
d C, e
e d € a, C/ d




Adjacency/Incidence

List (Directed 6raph)

List all the vertices that are the terminal vertices
of edges starting at each vertex of the graph

Adjacency List
Initial Terminal
Vertex Vertices

a b, d

b C

C b

d b c d




Check Point

Use an adjacency list to represent the given graph

a b c b

¢ a, ->

Figure 3

Figure 1

d € f > S—
. c d
(9
Figure 2 Figure 4
a ‘ (0) b e
e d 86




Adjacency/Incidence Matrix
(Simple Undirected 6raph)

If A=[aj]is the adf;‘acency matrix for simple
undirected graph &with nvertices w, w, ..., vi, then

{1 if {v;, v,} is an edge of G Ais

d; = symmetric

0 otherwise

Example 1: Use adjacency matrix to represent the

graph below.
b a b ¢ d e
0 1 10 1ja
a c 1 0 0 O Of»
A=/1 0 0 1 1|¢
0 010 1|d
€ d 1011 0




Adjacency/Incidence Matrix
(Simple Undirected 6raph)

Example 2: Use adjacency matrix to represent the

graph below.
A is
symmetric
) a b c d
0 1 0 1|«
1 01 1
0 1 0 1]¢
¢ 1 1 1 0]




Adjacency/Incidence Matrix
(Directed Graph)

The incidence matrix for undirected graph & with nvertices
v, Vs, .., V,, and medges ¢, e,, ..., e, is the mx nmatrix

M=1[m,], where

my; = 1 if there is a directed edge from v; to vy and
zero otherwise. This matrix need not be symmetric.

Example 1. Use incidence matrix to represent the
graph below.

To Vertex — 1 2 3 4
From Vertex l 1 1 l
1U — [0 1 0 O
2 —— |1 0 0 1
3 —— |0 1 0 O
4 — |0 0 0 0
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Check Point

Represent each graph with an incidence matrix

a ei1b o c e1
@

Figure 2

Figure 1

Figure 3
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Representation Matrix (not
Simple Undirected 6raph)

Ajj is represent by the number of edges that
associated to [a/, aj]

A loop at a vertex represent by 1

When multiple edges are present, adjacency matrix
is no longer a zero-one matrix.

The matrix is symmetric
Example: Use Representation matrix to represent

the graph below. a b ¢ d
0 3 0 1] ¢
a b 3 0 1 0 »
A =
0 1 1 2| ¢
d 10 2 0] @

91



Representation Matrix (not

Simple Undirected 6raph)

Lo B s . = I e R e |

o e o O e—

Lo S e B cm B i D B s

_—e— D O O O




Representation Matrix
(Directed 6raph)

Ajjis represent by the number of edges from a: to g;
A loop at a vertex represent by 1

When multiple edges are present, adjacency matrix
is no longer a zero-one matrix.

The matrix is not symmetric.

Example: Use adjacency matrix to represent the

graph below.

a b

. O O P =

R O N O n

R O O O o
o




Check Point

Represent the graph with a representation matrix
a b C a R b

Figure 3

Figure 1

a c f c : d : e
’ (9
Figure 2 Figure 4
a ‘ (0) b e
e d 94




Drawing a 6raph from Adjacency
Matrix

An adjacency matrix of a graph is based on the
ordering chosen for the vertices.

There are A different adjacency matrices for a
graph with s vertices, because there are Al different
ordering of nvertices

Example: Draw a graph with the given adjacency
matrix

a b ¢ d e y

0110 1)a

1 0 0 0 Ofb a ¢
A=1 0 0 1 1|¢

0010 1}|d . p

1 01 1 0je
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Drawing a 6raph from Adjacency

Matrix
The matrix [ © 1 O 1
1 o 1 o |
O 1 1 1 |
1 o 1 o '

Gives Rise To The Following Graphs

F"1 F"g P P,
Fl'
3 & i P3 &




I 1
- L a— 2 L

Drawing a 6raph from

Representation Matrix

A graph can be drawn directly from its
representation matrix as shown from the given
example.

Example: Draw a graph with the given adjacency
matrix

. 1 0
0 0 1
0 0 1
1 0
0 1 1




Check Point

Draw a graph with the given matrix

9 [0 1 10 [0 3 0 2
1 3 011
Ao 0 01 A
1 0 01 01 1 2
0110 2 1 2 0]
Adjacency matrix Representation matrix
cc [0 1 0 O]
00 20
A =
0 00O
1 1 11

Repr'e;em“a‘rion matrix
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Isomorphism of 6raphs

+ Two simple graphs & = (Wi, &) and & = (12, &) are
isomorphic if there is a one-to-one correspondence
between vertices of the two graphs that preserves
the adjacency relationship.

+ Isomorphism of simple graphs is an equivalence
relation.

* There are #l possible one-to-one correspondence
between the vertex sets of two simple graphs with »
vertices.

* The word Isomorphism comes from the Greek words
isos, meaning “same," and morph, meaning “form."
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Isomorphism of 6raphs
*Equal Graphs

* Drawings of graphs are useful in explaining or
illustrating specific situations . Here one should be
aware that a graph may be sketched in various
ways . In fact, a graph is determined by the
vertices and edges joining the vertices, not by
the particular appearance of the configuration.
Thus two graphs "G" and "G " are equal if they
have the same number of vertices: "P,, P,, ..P"
and if in each case they can be relabeled in such
a way that the number of edges between P, and
P, is the samein both "G" and "G ". oo




Isomorphism of 6raphs

- Different Sketches Of The Same Graph




Isomorphism of 6raphs
(Conditions Tips)

* For Two simple graphs 1 = (U, &) and & = (l%, &) to
be isomorphic :

AEZ
- &= |&

- The corresponding vertices in G: and
&2, will have the same degree.

Hence:
Isomorphism is invariant




Example 1: Isomorphism of 6raphs

C

* The graphs 6t and &z are isomorphic since:
-1Vl =|Vel=4 and |&|=|&|=D

61 ~deg (@) =deg(x) =2,
~deg(b) =deg(y) =2,
' _deg(c) =deg() =3,
-deg(d) =deg(u) =3

G2
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Exdimple 2;
Tsomoronisin of Graor

S
a b s t
e fr d X
/J g Z y
C. v U.
G: G2
- The graphs &: and &z are not isomorphic since:
- |W] = | Vs]=8and |&] = |&]| =10
- BUT
-deg(a)=2,inG .

- a must correspond to either t, u, x, or y in & since deg (7) =
deg (v) = deg (x) =deg (y)=2.
- However, each of these four vertices is adjacent to another

vertex of degree 2 which is not true for a. (a adjacent with to
another vertex of degree 3) 104




Tsomoronism of Graons
(By adjaczney marrix)

* For Two simple graphs 1 = (U, &) and & = (l%, &) to

be isomorphic
- The adjacency matrix of &

Is the same as

- The adjacency matrix of &, with
rows and column are labeled by the
images of corresponding vertices in &
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Example 3: Isomorphism of Graphs

* The graphs 6t and &z are isomorphic since:

Il = | 15]= 4
And

-Gl = |&] =5

o - Adjacency matrix of 611 Ae =

O R Pk O9
R P O Rk o
) O R B
O R kP OQ
Q 6 T Q

- Adjacency matrix of &2
with rows and column are
labeled by the images of I

corresponding vertices in
. A, =
% G G2

G2 N i

106
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Check Point

Determine if the following graph are isomorphic.

d

G1

Vi V2

V5 * \/ Z‘B
V4

G2

Vi

724

V5

V3

G1

G2

107
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Exercise Set 3.

1. Draw two equivalent graphs for each description.
i. The vertices are A, B, C, and D. Three edges are AB, BC, BD, €D, and CC.
ii. The vertices are A, B, C, and D. The edges are AD, BC, DC, BB, and DB.

2. In Exercises 2.a and 2.b, explain why the two figures show equivalent
graphs. Then draw a third equivalent graph.

) B i

-~

2.a




Exercise Set 3.

3. For Exercises 3.1 - 3.6, determine whether the two graphs are isomorphic.
if so, label corresponding vertices of the two graphs with the same letters
and color-code corresponding edges. (Note that there is more than one
correct answer for many of these exercises

3q 3.b
o —— [,

e ¢ .
l—llﬁ-—=¢ !c’ ; 3
_._._._._I._._._._.I_._._._..

3d ) 3.e :
I L
| | A7
[
| N . Vv




Parns and Lsomorpnisss

» 6raphs, & and &z are isomorphism only if in both
graph exist a simple circuit of same length k (k >2).

Example

b t

6raph & 6raph H

e

* Graph 6and H, both have 6 vertices and 8 edges.

 Each has 4 vertices of degree three, and two vertices of
degree two.

« Hhas a simple circuit of size three but all simple circuits in 6
have length at least four. So, &and A are not isomorphic.
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Cneck  PoinT

Determine if the following graph are isomorphic.

d ui1 u2 Vi V2
C .
C V5
C O
us u4 V3 V4
a b G G
Gi1
Vi1 V2 b
V2
V3 a
C
V3 V4 d
V4
GZ H GZ 111




Counting Parns ozrwzzn Yzrrices

* Let & be a graph with adjacency matrix A with respect to the
ordering V1, V2, .., vn (with directed or undirected edges, with
multiple edges or loops allowed).

The number of different paths of length r from vito vj, where
ris a positive integer, equals the (/, j))th entry of A’

How many paths of length 4 are there from a

to din &6?
Example
0 1 1 0] ‘800@ a b
1001 . |0 880
A: A:
1001 088 0
0110 8 00 8

d C
Hence, there are 8 paths of length 4 from ato d. Graph G

112




Cneck Point

Find the number of paths of length 2 between ato ¢ of
the following graphs.

Figure 1 Figure 2
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4 . Euler And Hamiltonian Paths

>
o
O







Introduction

1. Can we travel along the edges of a graph starting at
a vertex and returning to it by traversing each edge
of the graph exactly one?

+ Solve by Euler circuit by examining the degree of
vertices

2. Can we travel along the edges of a graph starting at
a vertex and returning to it while visiting each vertex
of the graph exactly one?

Solve by Hamiltonian circuit by examining the
degree of vertices




Euler Paths and Circuits

* Discovered by Swiss Mathematician
Leonhard Euler (1736).

- An Euler path in a graph & is a simple path
containing every edge of & (Travels through
every edge once and only once - Each edge
must be fraveled and no edge can be
retraced.)

* An Euler circuit in a graph &' is a simple
circuit containing every edge of & (Travels
through every edge once and only once - Like
all circuits, must begin and end at the same

vertex.)




Euler Paths and Curcun's

f£aler path startz hare.

<»

Eslor path ends Sere.

!.

The path A4, B £, F, D, B C, E, D, G is an Euler path
because each edge is traveled once. Trace this path with your
pencil. Now try using the numbers along the edges. The voice
balloon indicates a starting vertex, A, and the arrow shows
which way to trace first. When you arrive at the next vertex,
B, take the next numbered edge, 2. When you arrive at the
next vertex, £, take the next numbered edge, 3. Continue in
this manner until numbered edge 9 ends the path at vertex G.

118




Euler Paths and Circuits

Euler circuit starts and ends here

r

The path A, B, £, F, D, B, C, E, D, 6, A, shown with numbered
edges 1 through 10, is an Euler circuit. Do you see why? Each edge is
traced only once. Furthermore, the path begins and ends at the same
vertex, A. Notice that every Euler circuit is an Euler path. However,
not every Euler path is an Euler circuit.

Some graphs have no Euler paths. Other graphs have several
Euler paths. Furthermore, some graphs with Euler paths have no Euler
circuits. Euler's Theorem is used to determine if a graph contains Euler
paths or Euler circuits. 119




Check Point

a graph is shown and some sequences of vertices are specified.
Determine which of these sequences show Euler circuits. If not,
explain why not.

L. Cax) A —1 C — D — A — A D
B ———C — D — A
(b)) € —B — A — D — C
cC
B

—

d) A — — -1 B .
2. A a) A —B —C —->D —E —
F — A
" - (b) F - B — D — B

¢ . d) A —s B —s>F-—s1— B—>
B C — D —— E — F — A
F E (a) A—B —-=C —-D—E —F — A
(b A—B >C—>D—E—>G—>C—E —
: &) > (G - B - F > A
P 56 BB D-s B 0= G->E—
; F—>G-—-E—F—=A
d A—->B-—>G—>E—-=D—->C—->G—F—
B C B—C —E —F — A




Euler Paths and Circuits

- Euler's Theorem :

1. If a graph has exactly two odd vertices, then it has at least
one Euler path, but no Euler circuit. Each Euler path must start
at one of the odd vertices and end at the other one.

2. If agraph has no odd vertices (all even vertices), it has at least
one Euler circuit (which, by definition, is also an Euler path). An
Euler circuit can start and end at any vertex

3. If agraph has more than two odd vertices, then it has no Euler
paths and no Euler circuits

* Necessary & Sufficient Conditions:

- Theorem 1: A connected multigraph with at least two
vertices has an Euler circuit if and only if each of its
vertices has even degree.

- Theorem 2: A connected multigraph has an Euler path but
not an Euler circuit if and only if its has exactly two
vertices of odd degree.




Examples: Euler Paths and Circuits

» Explain why the graph in Fig. I has at least one Euler path. Use trial
and error to find one such path.

In the Fig. IT, we count the number of edges at each vertex to determine if the
vertex is odd or even. We see that there are exactly two odd vertices, namely O and
E. By the first statement in Euler's Theorem, the graph has at least one Euler path,
but no Euler circuit.

Euler's Theorem tells us that a possible Euler path must start at one of the odd
vertices and end at the other one. We will use trial and error to determine an Euler
path, starting at vertex D and ending at vertex £. Fig. IIT shows an Euler path: D, C,
B E, C A, B D, E Trace this path and verify the numbers along the edges.

Ever vertex:
Degree is 2.
A
Even vertan: Even vertae:
Pegree ir 4. Dagrea s &,
i e
D £

0dd verter: Flg IT 064 vartex: Ealer 'ﬂh F|9 III Ealer pat
Degree :; Degran ir 3. slarts bare. eidt bara.




Examples: Euler Paths and Circuits

Explain why the graph in Fig. A has at least one Euler circuit. b. Use
trial and error to find one such circuit .

In Fig. B, we count the number of edges at each vertex to determine if
the vertex is odd or even. We see that the graph has no odd vertices. By the
second statement in Euler's Theorem, the graph has at least one Euler circuit

An Euler circuit can start and end at any vertex. We will use trial and
error to determine an Euler circuit, starting and ending at vertex AH. Remember
that you must trace every edge exactly once and start and end at A. Fig. C shows an
Euler circuit. Trace this circuit using the vertices in the figure's caption and verify
the numbers along the edaes

Even: Degens 2
i—f A 11 B
: boes: Dapree & A B boes: Digree 4 jro———
{l | ! gl 12
) - . & y 1D
boos: Doy 2 ( D 1 ""'-___I_'ﬁ
T & T
i 14
[J. I H (s i B qu! r |:', - 1 II.II
| J '
: ‘ LU e gl Y L |
Ir : b Dy 2 Fig. B | b I Fig.C




Examples: Euler Paths and Circuits

g b a«—f a b Ddi: Dagena 3 G—4—-._ 0dd: Bagrna 2
e Ilr/f_ l-\.ll
'L 1-.5___“-‘%&:!_}_,.' E
d c e —, ¢’ d € L.—-"f. |
Gl G2 G3 AT Sakins 12
i hi!m!-\‘——-"' 0dd: Dagres 3
&l ©  Euler Circuit: (a, e, ¢, d, b, a)
&2 . No Euler path and Euler circuit
&3 Euler Path: 63 (a, ¢, d e, b, d, a, b)
&4. Shows a graph with one even vertex and four odd vertices.

Because the graph has more than two odd vertices, by the third
statement in Euler's Theorem, it has no Euler paths and no Euler
circuits »




Check Point

Use Euler's theorem to decide whether the graphs in figures 1-5
have an Euler circuit. (Do not actually find an Euler circuit.) Justify
each answer briefly-

A Fig.3

Fig. 1 A
A D




Euler Paths and Circuits

Fluery's Algorithm

If Euler's theorem indicates the existence of an Euler

path or Euler circuit, one can be found using the following
procedure:

1,

If the graph has exactly two odd vertices (and therefore an
Euler path), choose one of the two odd vertices as the
starting point. If the graph has no odd vertices (and
therefore an Euler circuit), choose any vertex as the starting
point.

2. Number edges as you trace through the graph according to the

following rules:

- After you have traveled over an edge, erase it. (This is because you
must travel each edge exactly once.) Show the erased edges as
dashed lines.

- When faced with a choice of edges to trace, choose an edge that is
not a bridge. Travel over an edge that is a bridge only if there is no
alternative. 126




Euler Paths and Circuits
Fluery's Algorithm

Use Fluery's Algorithm tob find an T E
Euler's circuit for the graph shown in . f
R.H.S. <

o

Siep 1 7

€A in a bridge.
If it were removed,
vertes A weuld
be isslated fram
the rest of the

graph.

¥

Trawel From A 10 1D
and erase edge A7, Teawe! from /O vo O
and arses edge OC,
We can aalso travel from
A We can also irave) from
w0 fFf o 5.




Euler Paths and Circuits

Fluery's Algorithm

Step Step 4

PE FE s beidge.
IF it ware ramaned,
M graph world
bavt s
frcannseind
campaneaky,

Traval fram F e 12
and evuse edge FIP,

Tl fom C'he F
and arses odge CF,

Wi can alss travel from
Fio 2. butl ot from F i
£, Dom™i eross the bridse.

We can also travel from
C to £, but not from C 10
A.Don't cross the bridge.




Euler Paths and Circuits
Fluery's Algorithm

Step S Seps 6,7.8,9
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There are o cther choces

Ihere are no chosces at each step.



Euler Paths and Circuits
Fluery's Algorithm

The completed Euler circuit is shown in Figure below




Exercise Set 4.A

1-14, In Exercises 1-14 determine which of the following graphs
have an Euler path, Euler Circuit and those that do not have? If
the graph has an Euler path or circuit, use trial and

error or Fleury's Algorithm to find one.
a b

Figure 1

f y

Figure 3 Figure 4

Figure 2
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A Figure 5

O]

Figure 7 A
ey

Figure 9 i Figure 10 £



Figure 11 i §

"
s}
Figure 12
h z
~1 M P
L £L¥
£ FA Figure 14 Il

Figure 13




15-17. For Exercises 15-17, determine whether the graph has an
Euler path that begins and ends at different vertices. Justify
your answer. If the graph has such a path, say at which vertices
the path must begin and end.

A F A G
&

C

D [ Figure 16
Figure 15

Figure 17 |

B C D G 134



18-20. Use Euler's theorem to determine whether the given
graph has an Euler circuit. If not, explain why not. If the graph
does have an Euler circuit, use Fleury's algorithm to find an Euler
circuit for the graph. There are many different correct answers

A Figure 18 I Figure 19
G E |
H
F H
C
D J G
| L
IS |
B i =
| B

@ Figure 20 E



21-25. For Exercises 18-22 use Euler's theorem to determine
whether the graph has an Euler circuit, justifying each answer. Then
determine whether the graph has a circuit that visits each vertex
exactly once, except that it returns to its starting vertex. If so,
write down the circuit. (There is more than one correct answer for

some of these.)

Fig. 23
A B
. E
Ga 9% Al R
A p F C
| B
H K C E D

B C Fig.24 D E B C Fig.25 D E




26-29. 1In Exercises 23-26, use Fleury's Algorithm to find an
Euler path.

1

A e
- ¥ -

Figure 27
Figure 26

‘* ' Bf

Figure 28 F Figure 29




30-33. In Exercises 27-30, use Fleury's Algorithm to find an
Euler circuit.
A Figure 31

Figure 30

J K L M N
Figure 33 138

Figure 32

&~ L




34-36. In Exercises 31-33, use Fleury's Algorithm to find an
Euler circuit beginning and ending at A. There are many different
correct answers.

G

Figure 34 A Figure 35 F

B C B
Figure 36 139




37-40 1In Exercises 34-37, agraph is given:

a. Modify the graph by removing the least number of edges so that the
resulting graph has an Euler circuit. b. Find an Euler circuit for the
modified graph..

Figure 37 Figure 38

R IL L..I - 7
Figure 39 ) " Figure 40



41-42 . For Exercises 41-42, use Euler's theorem to
determine whether it is possible to begin and end at the
same place, trace the pattern without lifting your pencil,

and ftrace over no line in the pattern more than once.

Fig. 41 Fig. 42




43. The graph in the next column shows the layout of the paths in a
botanical garden. The edges represent the paths. Has the garden
been designed in such a way that it is possible for a visitor to find a
route that. begins and ends at the entrance to the garden (repre-
sented by the vertex A) and that goes along each path exactly
once? If so, use Fleury's algorithm to find such a route.




44-46. In Exercises 44-46 the graph does not have an Euler circuit.
For each graph find a circuit that uses as many edges as possible.
(There is more than one correct answer in each case.) How many

edges did you use in = o

A B

Fig. 44 Fig. 45
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47-50. In Exercises 47-50 different floor tilings are shown. The
material applied between ftiles is called grout. For which of these
floor tilings could the grout be applied beginning and ending at the
same place, without going over any section twice, and without
lifting the tool? Justify answers

Fig. 48

XXX
200
NN

Fig. 49 Fig. 50




51. Use Fleury's Algorithm to find an Euler circuit’




4.B Applications On:

Euler Paths and Circuits

North Bank




Applications On: Euler Paths and Circuits

Bridges Problem

- Seven bridge of Konigsberg problem: it is possible to start at some
location at the town (Prussia), travel across all the bridges without
crossing any bridge twice, and return to starting point.

+ We can find a path or circuit that traverse:
-Each street in a neighborhood exactly one.
-Each road in a transportation network exactly one.
~-Each link in communication network exactly one.

- Euler path or circuit also applied in
-Layout of circuits.
-Network multitasking.
-Molecular biology (DNA sequencing) .




Check Point

The layout of a city with land masses and bridges is shown

Naorth Bank

S ;;l’-'.-’ai"“.ﬁ"

i o - = :i:\te—~ '
x
;’.' = \'\ - .“\ . River

._\.c,,__, SN

South Bank

=:

a. Draw a gr'aph that models the layout of the city. Use vertices to
represent the land masses and edges to represent the bridges.

b. Use the graph to determine if the city residents would be able to
walk across all of the bridges without crossing the same bridge twice.
c. If such a walk is possible, show the path on your graph in part (a).
Then trace this route on the city map in a manner that is clear to the
city's residents
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Applications On: Euler Paths and Circuits
Floors Problem

A, B, C, and D represent the rooms and, E represents the outside of the
house. The edges represent the connecting doors.

a. Is it possible to find a path that uses each door exactly once?

b. If it is possible, use trial and error to show such a path on the graph in
Figure (c) and on the floor plan in Figure (a).

A path that uses each door (or edge) exactly once means that we are looking
for an Euler path or an Euler circuit if on the graph in Figure (c) Figure
indicates that there are exactly two odd vertices namely B and D. By Euler's
Theorem, the graph has at least one Euler path, but no Euler circuit. It is
possible to find a path that uses each door exactly once. It is not possible to
begin and end the walk in the same Place.
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Applications On: Euler Paths and Circuits
Floor Plan Problem

Euler's Theorem tells us that a possible Euler path must start at
one of the odd vertices and end at the other one. We will use trial
and error to determine an Euler path, starting at vertex B (room B
in the floor plan) and ending at vertex D (room D in the floor plan).
Fig. (a) shows an Euler path on the graph. Fig. (b) translates the
path into a walk through the rooms.

. Edlar path
£ starts bare,

10

Esler path
ands hare.
(;‘ } ' t‘ "




Check Point

A floor plan is shown:

a. Draw a graph that models the connecting relationships in the
given floor plan. (Use vertices to represent the rooms and the
outside, and edges to represent the connecting doors.

b. Use your graph to determine if it is possible to find a path that
uses each door only once.

c. If such a path is possible, show it on your graph in part (a.) Then
trace this route on the floor plan in a manner that is clear to a
person strolling through the house.

Fig. 57

e




Applications On: Euler Paths and Circuits

Neighborhood Problem

A mail carrier needs to deliver mail to each house in the three-block
neighborhood shown. He plans to park at one of the street
intersections and walk to deliver mail. All streets have houses on
both sides. This means that the mail carrier must walk down every
street twice, delivering mail to each side separately.

- _______
/ _|—\—-_—-_._.__\_\_\_\_\_
- =t = - _:_-__-T—_——_.______
T— -_- ol -"'--H-'- _'__j-.:F "-.-'--H- . _-\-_\_-1—I—_
— - " = = o - -.:.- -
e 5
B - ==

a. Draw a graph that models the streets of the neighborhood walked
by the security guard.

b. Determine whether the residents in the neighborhood will be able
to establish a route for the security guard so that each street is
walked exactly once. If this is possible, use your map to show where
the guard should begin the walk. 152




G F
Since the graph shown above has :

The Degrees of all the vertices are Even, hence the carrier can park
at an intersection, deliver mail to each house without retracing the side
of any street, and return to the parked truck.

H

Parkisg- e 1 2 3
the- cavrri - ""--..__‘ - "'-..._hj _ - """....!
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Exercise Set 4.B

1. The layout of a city with land masses and bridges is shown below.

MNaoreh BPBank

- . P TR TS
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2 o — —— .
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South PRPank

a. Draw a graph that models the layout of the city. Use vertices to
represent the land masses and edges to represent the bridges.

b. Use the graph to determine if the city residents would be able to
walk across all of the bridges without crossing the same bridge
twice.

c. If such a walk is possible, show the path on your graph in part
(a). Then trace this route on the city map in a manner that is clear
to the city's residents 154




2. The figure shows a map of a portion of New york City with the
bridge and tunnel connections. Use a graph to determine if it is
possible to visit Manhattan, Long Island, Staten Island, and New
Jersey using each bridge or tunnel only once.




3. The accompanying
schematic map shows a
portion of the New York
City area, including tunnels
and bridges.

a. Is it possible to take a
drive around the New York
City area using each tunnel
and bridge exactly once,
beginning and ending in the
same place? Justify your
answer.

b. Is it possible fo take a
drive around the New York
City area using each tunnel
and bridge exactly once,
beginning and ending in
different places? If so,
where must your drive begin
and end? Justify your
answer.

New
Jersey




4-7. In Exercises 4-7, the floor plan of a building is shown. For
which of these is it possible to start outside, walk through each door
exactly once, and end up back outside? Justify each answer. (Hinft:
Think of the rooms and "outside" as the vertices of a graph, and the
doors as the edaes of the graph.)




8. A security guard needs to walk the streets of the neighborhood
shown, walking each street once.

a. Draw a graph that models the streets of the neighborhood walked
by the security guard.

b. Determine whether the residents in the neighborhood will be able
to establish a route for the security guard so that each street is
walked exactly once. If this is possible, use your map to show where
the guard should begin the walk.
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9. A police car would like to patrol each street in the neighborhood
shown on the map exactly once. Use numbering system from 1
through 31, one number per street, to show the police how this can
be done’




10. The map shows the roads on which parking is permitted at a
national monument. This is a pay and display facility. A security
guard has the task of periodically checking that all parked vehicles
have a valid parking ticket displayed. He is based at the central
complex, labeled A. Is there a route that he can take to walk along
each of the roads exactly once, beginning and ending at A? If so,
use Fleury's algorithm to find such a route

- S
> < T»




Summary of: Euler's Theorem

w
Numhe of Odd \'enlces W Eulet Patls Fulr Crt
) | . s
Nonc (all cvcnl at Iuast e at lca L

mdl, W0 | lcast Il e
I s . N — M "
more an (W0 lone e

161






Hamiltonian Paths and Circuits

- Discovered b; Irish Mathematician Sir William Rowan
Hamilton (1857)

» A Hamiltonian circuit HC : in a graph & is a simple circuit
that passes through every vertex in & exactly once.

» A Hamiltonian path in a graph & is a simple path that passes
through every vertex in & exactly once.

» Certain ProEer"ries In Hamiltonian Circuit (Hc):
- A graph with a vertex of degree one cannot have HC,
because each vertex in HC is incident with two edges.

- If a vertex has degree two, then both edges that are
incident with this vertex must be part of any HC.

- When a HC is being constructed and this circuit passes
through a vertex, then all remaining edges incident with
this vertex, other than two used in the circuit, can be
removed from consideration.

- HC cannot contain a smaller circuit within it.




Hamiltonian Paths and Circuits

*Necessary & Sufficient Conditions:
- The more edges a graph has, the more likely it is
to have a HC.

- Adding edges (but not vertices) to a graph with a
HC produces a graph with the same HC.

- DIRAC'S Theorem: If & is a simple graph with »
vertices with n> 3 such that the degree of every
vertex in G is at least n/2, then & has a HC.

- ORE'S Theorem: If & is a simple graph with »
vertices with n2 3 such that deg (v) + deg (v) 2 n
for every pair of nonadjacent vertices v and vin
&, then G has a HC.
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Hamiltonian Paths and Circuits

Examples
¥ P a b a b c
€ ¢ C L — O
) c d d f g
Gl G2 G3

« Hamiltonian Circuit: &1 (a, b, ¢, d, e, a)
* Hamiltonian Path: &2 (a, b, ¢, d)

&3 Neither Hamiltonian path nor Hamiltonian circuit
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Hamiltonian Paths and Circuits
Applications

- a mathematical game invented in 1857 by William Rowan Hamilton. The
game's object is finding a Hamiltonian cycle along the edges of a
dodecahedron such that every vertex is visited a single time, no edge is
visited twice, and the ending point is the same as the starting point. The
puzzle was distributed commercially as a pegboard with holes at the
nodes of the dodecahedral graph and was subsequently marketed in

Europe in many forms.

- We can find a path or circuit that visits:
- Each road intersection in a city exactly once.
- Each place pipelines intersect in a utility grid.

- Each node in a communications network exactly once.

» Euler path or circuit also applied in

- Traveling salesman problem which asks for the shortest route
a traveling salesman should take to visit a set of cities.

- Gray Code: labeling the arcs of a circle such that adjacent
arcs are labeled with bit strings that differ in exactty one bit.
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Check Point

Which of the following graphs have an Hamiltonian Circuit? Of
those that do not, which have an Hamiltonian path?

g Figurel p
® ®

b
1 RN\
e
fé ®e a ’ C

b f

i B, h

Figure 3 Figure 4

Figure 2 169




The Number of Hamilton
Circuits in a Complete Gr'aph
The graph in RHS has an edge between each pair of its
four vertices. Thus, the graph is complete and has a N

Hamilton  circuit. Actually, it has a completfe )
repertoire/list/collection/stock of Hamilton circuits. 3 C

For example, one Hamilton circuit is A, B, C, D,A. Any two circuits that pass
through the same vertices in the same order will be considered to be the
same. For example, here are four different sequences of letters that
produce the same Hamilton circuit on the given graph.

A B CD, Aand B,C,D,A,B and C,D,A,B,C and D,A,B,C,D.

The Hamilton circuit passing through A, B, C, and D clockwise along the four
outside edges can be written in four ways.

In order to avoid this duplication, in forming a Hamilton circuit, we can
always assume that it begins at A.

If a graph has n vertices, once we list vertex, A, there are n - 1 remaining
letters. The number of Hamilton circuits depends upon the number of
permutations of the "n - 1" letters, and it equals to (n - 1)L
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The Number of Hamilton
Circuits in a Complete Graph

Determine the number of Hamilton circuits in a complete graph with
a. four vertices. b. five vertices. c. eight vertices

a. A complete graph with four vertices has (4-1)1=31=321=6
Hamilton circuits. These are the six circuits that we listed at the
previous slide.

b. A complete graph with five vertices has (5-1)1=41=4 3.2 .1
= 24 Hamilton circuits.

c. A complete graph with eight vertices has (8 - 1)l = 71 = 7.6.5.
4.3.2.1 = 5040 Hamilton circuits.

As the number of vertices in a complete graph increases, notice
how quickly the number of Hamilton circuits increases.
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Check Point

Determine the number of Hamilton circuits in a
complete graph with

a. Three vertices.
b. Six vertices.
c. Ten vertices

Comment on your answers.
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Weighted Graphs,




Weighted 6raphs

* Graphs that have a number assigned to
each edge are called weighted graphs.

* Problems which modeled using weighted

graphs

- Airline system (vertices: cities,
edges: flight distances/ times/fares)

- Computer network (vertices:
computers, edges: communication
costs/response times/ distances)

* Types of problems need to solve:
- Shortest path/ path of least length:
- Smallest flight time, cheapest fare, fastest response
time, shortest distance.

- A circuit with shortest total length that visits every vertex
of a complete graph exactly once:
- Traveling salesman problem. 174




Exercise Set 4.C

A B "

Figure 1

i F Iy F

1-4 For the graph shown in Fig. 1

1. Find a Hamilton path that begins at,4 and ends at B.
2. Find a Hamilton path that begins at G and ends at E.
3. Find a Hamilton circuit that begins as A, B, . ..

4. Find a Hamilton circuit that beginsas A, G, ... .
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Figure 2

o

5-8  For the graph shown in Fig. 2
5. Find a Hamilton path that begins at,4 and ends at D.
6. Find a Hamilton path that begins at A and ends at G.

7. Find a Hamilton circuit that begins at.4 and ends with the pair of
vertices D , A.

8. Find a Hamilton circuit that begins at F and ends with the pair of
vertices D, F. 176




9-14 For the graphs in Figures 9 -14,

a, Determine if the graph must have Hamilton circuits, Explain your
answer.

b. If the graph must have Hamilton circuits, determine the number
of such circuits.

Fig. 4 ;
L % Fig. 5 ¢

9. A

12.




In Exercises 15-18, determine the number of Hamilton circuit in a
complete graph with the given number of vertices:

15. 3 16. 4 17.12 18.13

In Exercises 19-24, use the
complete weighted graph shown
in fig. 9 to:

19. Find the weight of edge CE.
20. Find the weight of edge BD.

21. Find the total weight of the
Hamilton circuit A, B, C, E, D, A.

22. Find the total weight of the
Hamilton circuit A, B, D, C, E, A.

23. Find the total weight of the
Hamilton circuit A, B, D, E, C, A.

24. Find the total weight of the
Hamilton circuit A, B, E, C, D, A.




In Exercises 25-34, use the complete weighted graph shown in fig. 10 to:
25. Find the total weight of the Hamilton circuit A, B, C, D, A.
26. Find the total weight of the Hamilton circuit A, B, D, C, A.
27. Find the total weight of the Hamilton circuit A, C, B, D, A.
28. Find the total weight of the Hamilton circuit A, C, D, B, A.
29. Find the total weight of the Hamilton circuit A, D, B, C, A.
30. Find the total weight of the Hamilton circuit A, D, C, B, A.

31. Use your answers from Exercises 25-30 and the Brute Force Method
to find the optimal solution.

32. Use the Nearest Neighbor Method, with starting vertex A, to find an
approximate solution. What is the total weight of the Hamilton circuit?

33. Use the Nearest Neighbor Method, with starting vertex B, to find an
approximate solution. What is the total weight of the Hamilton circuit?

34. Use the Nearest Neighbor Method, with starting vertex C. to find an

approximate solution. What is the total weight of the Hamilton circuit?
e |

1=k <40
Fig. 10
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In Exercises 35 - 36, a sales director who lives in city A is required to fly to
regional offices in cities B, C, D, and E. The weighted graph in figure 11
shows the one-way air fares between any two cities.

35. Use the Brute Force Method to find the optimal solution. Describe what
this means for the sales director. (Hint: Because the airfares are the same
in either direction’ you need only compute the total cost for 12 Hamilton
circuits:

A B CDEA ABDCEA ABECDA ACBDEA
A C,DBEA ADBCEA ABCENDA ABNDEZCA;
A B ED,CA ACBEDA ACEBDA ADCBEA)

36. Use the Nearest Neighbor Method, with starting vertex A, to find an
approximate solution’ What is the total cost for this Hamilton circuit?

Fig. 11




37-40. You have five errands to run around town, in no particular order. You plan to
start and end at home . You must go to the post office, deposit a check at the bank,
drop off dry cleaning, visit a friend at-the hospital, and get a flu shot. The map shows
your home and the locations of your five errands. Each block represents one mile.
Also shown is a weighted graph with distances on the appropriate edges. Your goal is
to run thee errands and return home using the shortest route.

37. Use the map to fill in the three missing weights in the graph.

38. If each Hamilton circuit represents a route to run your errand, show many
different routes are possible?.

39. Using the Brute Force Method, the optimal solution is Home, Bank, Post Office,
Dry Cleaners, Hospital, Medical Clinic, Home. What is the total length of the shortest
route?

40. Use the Nearest Neighbor Method fo find an approximate solution. What is the
total length of the shortest route using this solution? How does this compare with
your answer to Exercise 39?

Home ,\-I.ed ical
g Medical Clinic Clinic , Home
ospita
- 'F(':‘ ‘: ‘{;‘ - .
/-xrﬁxffli‘x?iri:»\
S S e D e Bank
\‘-,F. ><”4-._1.>.<_.’.\~=‘f.-- \_-\;'/_"
R < R Al S
S S
A Bank
-
Dry Cleaners Post

Post Office Cleaners Office




4.0 Important
Applications Of
Hamilton's Circuit

O Weighted Graphs and the Traveling Salesperson
Problem:
= Brute Force Algorithm.
= Nearest Neighbor Method.

A Graph Coloring



Weighted Graphs and the
Traveling Salesperson Problem

Sales directors for large companies are often
required to visit regional offices in a number
of different cities. How can these visits be
scheduled in the cheapest possible way?

For example, a sales director who lives in city
A is required to fly to regional offices in
cities B, C, and D. Other than starting and
ending the trip in city A, there are no
restrictions as to the order in which the
other three cities are visited.

The one-way fares between each of the four
cities are given in given Table. A graph that
models this information is shown in the given
Figure. The vertices represent the cities. The
airfare between each pair of cities is shown
as a humber on the respective edge.

A B D
A ¢ §I0 $14 §IST
B g% ¢ S16 SIS

C oS4 s ¢ $I
D oIS S5 S ¢ |
A 190 B

157

D 179 C




Weighted Graphs and the
Traveling Salesperson Problem

Brute Force Method

One method for finding an optimal Hamilton circuit is called the
Brute Force Method.

The optimal solution is found using the following steps:

1. Model the problem with a complete, weighted graph.
2. Make a list of all possible Hamilton circuits.

3. Determine the sum of the weights of the edges for each of
these Hamilton circuits.

4.The Hamilton circuit with the minimum sum of weights is the
optimal solution .




Weighted Graphs and the
Traveling Salesperson Problem

The traveling sales person problem is the problem of finding a
Hamilton circuit in a complete weighted graph for which the sum
of the weights of the edges is a minimum. Such a Hamilton circuit
is called the Optimal Hamilton Circuit or the Optimal Solution.

Hamnl fon Clrcult Sum of the Welghts of the Edges | Total Cost |

A 1% B | 4BCDA | 190+ 106+ 179 + 157$652
ABD CA190 P = 8
TAGRDA | DI - S0
ACDBA | DieIBEISTI0 = S8
e [yngos | welemem - | B0 |

ADCBA 157+179+126+190 o= e




Weighted Graphs and the
Traveling Salesperson Problem

It is clear that there are two Hamilton circuits that have the minimum cost
of $562. The optimal solution is either A,C,B,D,A or A,D,B,C A.

For the sales director, this means that either route shown in Figures (a) and

(b) has the least expensive way, to visit the regional offices in cities B, C,
and D.

Notice that any of the two route solution is the reverse of the other.

Optimum solution: Optimum solution:
A, C,B,D, A A, D, B,C,A

A 190 B A 190 B

D 179 C 179 C

(a) Fly from A to C to B to (b) Fly from A to D to B to
D and then back to A C and then back to A




Weighted Graphs and the Traveling
Salesperson Problem

Suppose that a supercomputer can find the sum of the weights of one
billion, or 10° Hamilton circuits per second. Because there are 31,536,000
seconds in a year, the computer can calculate the sums for approximately
3.2 x 10 Hamilton circuits in one year. The table below shows that as the
number of vertices increases the Brute Force Method is useless even with

a powerful computer.

Time Needed by a

Number Number of Supercomputer to

of Hamilton Find Sums of All
Vertices Circuits Hamilton Circuits

18 171 = 3.6 = 10 ~0.01 year ~ 3.7 days

19 181 — 6.4 % 10 ~0.2 year =~ 73 days

20 o1 L ~3.8 years

21, 20! =24 52 10'° ~76 years

22 S ol (0 ~1597 years

23 2alss ] 1 RO ~35,125 years




Weighted Graphs
And:

<+ The Traveling Salesman Problem was first formulated a in 1930.
It is a mathematical problem used in graph theory that requires
one to find the most efficient route (tour) that a salesman can
take to visit s cities exactly once and return home.

“+In general, the objective is to visit » cities once and return
home with the minimum amount of travel. This relates to our
project in that we must use the Traveling Salesman Problem in
order to find the shortest possible route for a rover that will
visit seven sites on Mars.
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Weighted Graphs and the Traveling
Salesperson Problem

Suppose a sales director who lives in city A is
required to fly to regional offices in ten other cities
and then return home to city A. With(11 - 1)I, or
3,628,800, possible Hamilton circuits, a list is out of the
question.

What do you think of this option? Start at city A.
From there, fly to the city to which the air fare is
cheapest. Then from there fly o the next city to which
the air fare is cheapest, and so on. From the last of the
ten cities, fly home to city A. By continually taking an
edge with the smallest weight, we can find approximate
solutions to traveling s ales person problems. This
method is called the Nearest Neighbor Method.
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Weighted Graphs and the Traveling
Salesperson Problem

Suppose a sales director who lives in city A is
required to fly to regional offices in ten other cities
and then return home to city A. With(11 - 1)I, or
3,628,800, possible Hamilton circuits, a list is out of the
question.

What do you think of this option? Start at city A.
From there, fly to the city to which the air fare is
cheapest. Then from there fly o the next city to which
the air fare is cheapest, and so on. From the last of the
ten cities, fly home to city A. By continually taking an
edge with the smallest weight, we can find approximate
solutions to traveling s ales person problems. This
method is called the Nearest Neighbor Method.
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Weighted Graphs and the

Traveling Salesperson Problem

The Nearest Neighbor Method Of Finding
Approximate Solutions to Travelling
Salesperson Problems

The optimal solution can be approximated u sing the following steps:
1. Model the problem with a complete, weighted graph.
2. Identify the vertex that serves as the starting point.

3. From the starting point, choose the edge with the smallest weight. Move
along this edge to the second vertex. (If there is more than one edge with
the smallest weight, choose either one.)

4. From the second vertex, choose the edge with the smallest w eight that
does not lead to a vertex already visited. Move along this edge to the third
vertex.

5. Continue building the circuit, one vertex at a time, by moving along the
edge with the smallest weight until all vertices are visited.

6. From the last vertex, return to the starting point. 101




Weighted Graphs and the
Traveling Salesperson Proglgg@

A sales director who lives in city A is required
to fly to regional offices in cities B, C, D, and
E. The weighted graph showing the one-way air
fares is given in RHS.

Use the Nearest Neighbor Method to find an
approximate solution. What is the total cost?

Solution: The Nearest Neighbor Method is carried out as follows:
1. Start at A.
2. Choose the edge with the smallest weight: 114. Move along this edge to C. (cost:$ 114)

3. From C choose the edge with the smallest weight that does not lead to A:115. Move along
this edge to E. (cost: $115)

4. From ,E, choose the edge with the smallest weight that does not lead to a city already
visited: 194. Move along this edge to D. (cost: $194).

5. From D, there is little choice but to fly to B, the only city not yet visited. (cost: $ 145)
6. From B, close the circuit and return home to,4. (cost: $180)

An approximate solution is the Hamilton circuit: A,C,E,D,B,A.
The total cost is $114 + $115 + $194 + $145 + $180 = $748.
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Weighted Graphs and the
Traveling Salesperson Problem

What is the shortest Hamilton circuit that connects all of the
state capitals in the 48 contiguous states?
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“»Two Mars Exploration rovers/travellers were launched towards
Mars on June 1o and July 7, 2003. Each landed on Mars on January 3
and January 24, 2004, respectively. The mission was to search for
evidence of water on Mars. Also, their mission was to search for and
characterize many rocks and soils that hold clues/signs to
past/history water activity on Mars.

“»The spacecrafts were sent to targeted sites on opposite sides of
Mars. Each site possibly holding evidence of having water in the past.
The landing sites were Gusen Crater, a possible former lake, and
Meridiani Planum, suggesting Mars had a wet past. The goal of each
rover was to drive up to 40 meters (and 44 yards) per day, for a
grand total of 1 kilometer (about three-quarters of a mile).




Wzi’gh‘fed é’}r’aph On Mars




-n--“--

/500 5000 2800 3500 1500 2200

G 7500 3000 6000 8000 6500 5000
H 5000 3000 4000 4800 3500 2800
I 2800 6000 4000 2000 3000 2900
N 3500 8000 4800 2000 4000 3200
P 1500 6500 3500 3000 4000 1300

W 2200 5000 2800 2900 3200 1300

Distance in miles




“*We found the total number of different Hamilton
circuits by using the following known property: /¥ N is
the number of vertices of a complete graph then the
number of Hamilton circuits in the graph is N minus one
factorial:

*N=7 == (7-1) = 6!
% 61=65.43.21=720

% Therefore, there are 720 different Hamilton Circuits
to find an optimal route for the seven sites on Mars.




BRUTE FORCE AL@ORTTHM

<+ Brute Force is a list of all the possible
Hamilton circuits (tours) of the graph.
For each Hamilton tour, we calculate
its total weight (add the weights of all
the edges in the circuit). An optimal
tour ( least value) is then chosen,
there is always more than one optimal
Tour.

4

L)

* The reason the Brute Force Algorithm
is inefficient is that there are (6! =
6.5.4.3.2.1 = 720) different Hamilton
Circuits to solve for an optimal tour.

)




<*The Cheapest Link Algorithm

“CL=A = P =W =HH =5 =N = =A -
21,400miles

> 1500 1300 2800 3000 8000 2000 2800

<*The Nearest Neighbor Algorithm

eN: A™ p = W = | o mhpI =) N = A-
20,100 miles

1500 1300 2800 3000 6000 2000 3500

“+*The Nearest Neighbor Algorithm gives the most
efficient route for the MARS probe to travel with
a total of 20,100 miles.




Using the Repetitive Nearest Neighbor Algorithm, we found

that beginning at site A produces the shortest traveling

distance.
Aepewe HeGeleNeA
P-W-—A I N—H-G—=P
W =P —A | = H>N—>G>W

N —| A P>W—H>G~> N
| =N -W-—-P >A>-H->G—> |

H_W__.P A. - N. G. H
G—=H =W P- A=+ N> G
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Proposed by Francis Guthrie in 1852 and remained unsolved for
more than a century.

(g
o
-3
0O
c
-+
7]

Can any map be coloured with 4 colours so that no two adjacent
regions have the same colour?




Examples of a-4 Coloring
Theorem




Why not 3 colours?

» A simple example shows that it impossible to
always colour a map with only 3 colours.




Why not 5 colours?

It was proved by 1890 that every map can
be coloured with at most 5 colours.

+ The difficult part of the problem was to
show that there was no map sufficiently
complicated as to need 5 colours.

* Martin Gardner set the following graph as a
problem to his readers. Can you colour it
using only 4 colours?




Martin Gardner’'s map




In Terms of Graphs

* The 4-colour problem can be phrased in
terms of graphs.

* Each region of the map becomes a node,
with two nodes being connected by an
edge if and only if the regions are
adjacent on the map.

* The problem becomes: can you colour
the nodes with 4 colours so that an edge
never conhects two nodes of the same
colour?




Maps to graphs
(Dual Graph)

=




Maps and Dual Graphs

* Each map in the plane can be represented by a graph
(Dual Graph).
- Vertex: Region
- Edge: A common border of two adjacent Regions
A and B

* Dual Graph is planar graph
B

9‘ D 6

A map A Dual Graph E

210




Graph Coloring

* The problem of coloring the regions of a maps is equivalent to
the problem of coloring the vertices of the dual graph so that
no two adjacent vertices in the graph have the same color.

* The least number of colors needed for a coloring graph is given
by chromatic number which denoted by x (&).

* The Chromatic number for planar graph is not greater than 4.

B Green

Yellow Blue
G

A coloring Dual
6raph with x
(6) = 4. red A coloring map




Check Point

Construct the dual graph for the map shown. Then find
the number of colors needed to color the map so that no
two adjacent regions have the same color.

Figure 1 Figure 2
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Check Point

Find the chromatic number of the given graphs.

Figure 1 Figure 2




Scheduling Final Exams

How can the final exams at UMP be scheduled so that no
student has two exams at the same time?

Suppose that, 7 finals to be scheduled and the following
pairs of course have common students.
1&2, 1&3, 144, 1&7, 243, 244, 245, 247, 3&4, 346, 347,
445, 446, 5&6, 5&7, and 647

7 red
brown 7 2 blue Time Period Course
I 1, 6
IT 2
red s 3 green III 3,5
Iv

green 5 4 brown
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Check Point

Schedule the final exams for Math 115, Math
116, Math 185, Math 195, €S 101, €S 102, CS
273, and CS 473, using the fewest number of
different slots, if there are no students taking
both Math 115 and CS 473, Math 116 and CS
473, both Math 195 and €S101, both Math 195
and CS 102, both Math 115 and Math 116, both
Math 115 and Math 185, and both Math 185
and Math 195, but there are students in every
other combination of courses.







5.A Definitions & Properties

* A treeis agraph that is connected and has no circuits. All trees have the
following properties:
1. There is one and only one path joining any two vertices.
2. Every edge is a bridge.
3. A tree with n vertices must have n - 1 edges.

A Examples of Graphs
that are Trees A
E F B B &
D E F G H
D C
A
Examples of Graphs A
that are not Trees

E ) B
D E F G H
s = FC ti
s oo “d":l Eige BC, oeasting fidr’c:it A B.F C, A,
::r’:hﬁ(:l:.:o‘still cirenit £, B, C, F, is u‘umia‘n{.‘
is redundant.

be reached.




Illustrative Example

which of the following graphs is a tree? Explain why the other two
graphs shown are not trees?

A
. c
/A‘ . C. /\ (' E
\ ) \/\/ E
B
B® B D
D D
(b)

(a) (c)

Solution The graph in Figure (b) is a tree. It is connected and has no
circuits. There is only one path joining any two vertices. Every edge is a
bridge; if removed, each edge would create a disconnected graph. Finally,

the graph has 5 vertices and 5 - 1, or 4, edges.

The graph in Figure (a) is not a free because it is disconnected. There are
five vertices and only one edge; a tree with five vertices must have four
edges.

The graph in Figure (c) is not a tree because it has a circuit, namely C, D, E,
C. There are five vertices and five edges; a tree with five vertices must
have four edges.
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Check Point

Which graph in the following Figure is a tree? Explain
why the other two graphs shown are not trees.

g ¥ g ¥ EF
¥ & X B C B (
/‘\ G b (
) A [ A /)

(4) (b) (C)

A




5.8 Spanning Tree

Original graph Two possible subgraphs

A subgraph that contains all of a connected graph's vertices is connected and
contains no circuits is called a spanning tree. The two subgraphs in Figure given
above, are spanning trees for the original graph. By removing redundant
connections the spanning trees increase the efficiency of the network modeled
by the original graph.

It is possible to start with a connected graph, retain all of its vertices, and
remove edges until a spanning tree remains. Being a tree, the spanning tree
must have one less edge than it has vertices.

Spanning Tree is one way to increase the efficiency of a network byremoving
redundant connection 220




Check Point

Find a spanning tree for each of the graphs given below?

A B




Minimum Spanning Tree

Many applied problems involve creating the most efficient network for a
weighted graph. The weights often model distance costs or time, which we want
tfo minimize. We do this by finding a minimum spanning tree. The minimum
spanning tree for a weighted graph is a spanning tree with the smallest possible
total weight.

12

(a) Original (b) A spanning tree (c) A spanning lree
weighted graph with weight with weight
' 35 +24+20+8+ 17 + 15 35+17+12+15+20+8
=119 = 107

Figures (b) and (c) show two spanning trees for the weighted graph in Figure (a).
The total weight for the spanning free in Figure (c), 107, is less than that in
Figure (b), 119. Is this the minimum spanning tree, or should we continue to
explore other possible spanning trees whose total weight might be less than
1072

A very simple graph can have many spanning trees. Finding the minimum spanning
tree by finding all possible spanning trees and comparing their weights would be
too Time-consuming 222




Minimum Spanning Tree Using
Kruskal's Algorithm

In 1956, the American mathematician Joseph Kruskal discovered a
procedure that will always yield a minimum spanning tree for a weighted
graph. The basic idea in Kruskal's Algorithm is to always pick the smallest
available edge but avoid creating any circuits.

Kruskal's Algorithm

Here is a procedure for finding the minimum spanning tree from a weighted
graph:

1. Find the edge with the smallest weight in the graph. If there is more than
one, pick one at random. Mark it in red (or using any other designation).

2. Find the next-smallest edge in the graph. If there is more than one, pick
one at random. Mark it in red.

3. Find the next-smallest unmarked edge in the graph that does not create
a red circuit. If there is more than one, pick one at random. Mark it in red.

4. Repeat step 3 until all vertices have been included. The red edges are the
desired minimum spanning tree s




Illustrative Example
ifﬂc"':"' 255 /

Fig. a
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Figure (a) shows seven buildings on a college campus are connected
by the sidewalks .

The weighted graph in Figure (b) represents buildings as vertices,
sidewalks as edges, and sidewalk lengths as weights. A heavy snow
has fallen and the

sidewalks need to be cleared quickly. Campus services decides to
clear as little as possible and still ensure that students walking from
building to building, will be able to do so along cleared paths.
Determine the shortest series of sidewalks to clear. What is the
total length of the sidewalks that need to be cleared?
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Illustrative Example

Solution Campus services wants to keep Fig. ¢ Step 6
the total length of cleared sidewalks to ' |

a minimum and still have a cleared path 255 _~ AN\
connecting any two buildings. Thus they | \2%6 e
are seeking a minimum spanning tree ‘ [ £
for the weighted graph in Figure (b).
We find this minimum spanning tree
using Kruskal's Algorithm. Refer to
Figure (c) as one reads the steps in the
algorithm.

¢ 259 3

251

3

A

274 G Supl

Step 1. Find the edge with the smallest weight. Select edge GF (length:

242 feet) by marking it in red.

Step 2. Find the next-smallest edge in the graph. Select edge BD (length:
245 feet) by marking it in red.

Step3. Find the next-smallest edge in the graph. Select edge AD (length:
249feet) by marking it in red.

Step 4. Find the next-smallest edge in the graph that does not create a
circuit. The next-smallest edges are AB and DG (length of each: 251 feet).
Do not select AB-it creates a circuit. Select edge DG by markingst in red.




Illustrative Example

Step 5. Find the next-smallest edge in the
graph that does not create a circuit. Select
edge CD (length: 253 feet) by marking it in red.
Notice that this does not create a circuit’

Step 6. Find the next-smallest edge in the
graph that does not create a circuit. The next-
smallest edge is BC, (length 255 feet), but this
creates a circuit. Discard BC. The next-smallest
edge is CF, (length 256 feet), but this creates a
circuit. Discard CF. The next.-smallest edge is
CE (length: 259 feet). This does not create a
circuit, so select edge CE by marking it in red.

Now one can see the minimum spanning tree in
Figure (d) is completed? The red subgraph
contains all of the graph's seven vertices' is
connected, contains no circuits, and has 7 - 1, or
6, edges. Therefore, the red subgraph in Figure
(d) shows the shortest series of sidewalks to
clear. From the figure one see that there are:
242 + 245 + 249 + 251 + 253 + 259 or 1,499
feet of sidewalks that need to be cleared

p ar o

D

| dagg

g daig




Check Point

Use Kruskals' Algorithm to find the minimum spanning
tree for the graph shown below. Give the total weight
of the minimum spanning tree.




5.C Binary Encoding Tree

The unique path property of a tree can
be used to set up a code. Here we set ' root
up a binary code, that is, a code with
strings of Os and 1s representing
letters. (Recall that when we represent
humbers in binary form we use only the
symbols O and 1.)

To set up the binary code we use a
special kind of tree (called a binary
tree) like that shown in the figure. This
tfree is a directed graph (there are
arrows on the edges). The vertex at the
top (with no arrows pointing toward it)
is called the root of the directed tree;
the vertices with no arrows pointing
away from them are called leaves of the
directed tfree.

We label each leaf with a letter we
want to encode.
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5.C Binary Encoding Tree

The diagram shown provides an | root
encoding for only 8 letters, but we
could easily draw a bigger binary
tree with more leaves to represent
more letters.

We now write a O on each branch
extending to the left and a 1 on
each branch extending to the right.

To show how the encoding works,
let us write the word MAD using
the code. Follow the unique path
from the root of the tree down to
the appropriate leaf, noting in
order the labels on the edges.
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5.C Binary Encoding Tree

M |s wrntten 000
A is wrltten 011
D IS ertten 100

So MAl is ert en 0000 1100




5.C Binary Encoding Tree

We can easily translate this code using i
our tree. Let us see how we could root
decode 000011100. Referring to the| -» /
tree, we can see that there is only one ' -

path from the root to a leaf that can -\
give rise to those first three Os, and ‘ ‘

that is the path leading to M. So we Va
can begin to separate the code word 0 \
into  letters:  000-011100.  Again /
following down from the root, the path /

011 leads us unambiguously to A. So we / 0 \
have 000-011-100. The path 100 leads 1 |

L_:-r;‘amblguously to D. | M I\ A D
e reason we can translate the string
of Os and 1s back to letters without 0f \l
ambiguity is that no letter has a code :
that is the start of the code for a BB
different letter.
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Check Point

1. Use the binary encoding tree to write the binary code for each of the
following words: FEET, ANT

2. Use the encoding tree to find the word represented by each of the
following codes: 1000101001101 , 0001111001

3. Decode the following message (commas are inserted to show
separation of words). 00001010101101, 0000101, 011101,
1010101010111,

re» it







