

Course Specifications

Course Title:	Calculus 2	
Course Code:	Math 120	
Program:	Information and Computer Sciences	
Department: Computer Science and Information		
College:	College of Science at Az Zulfi	
Institution:	Majmaah university	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes4	
1. Course Description	4
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	7
G. Course Quality Evaluation7	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: (3) $(2 \text{ Lec} + 2 \text{ lab})$
2. Course type
a. University College $$ Department Others
b. Required $$ Elective
3. Level/year at which this course is offered:
2 nd level
4. Pre-requisites for this course (if any): MATH 110
5. Co-requisites for this course (if any): Nil

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	48	80%
2	Blended	6	10%
3	E-learning	6	10%
4	Correspondence		
5	Other		

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours			
Conta	Contact Hours				
1	Lecture	30			
2	Laboratory/Studio	30			
3	Tutorial				
4	Others (specify)				
	Total	60			
Other	Learning Hours*				
1	Study	30			
2	Assignments	30			
3	Library				
4	Projects/Research Essays/Theses	10			
5	Others (specify)	30			
[Total	100			

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description :

The current course aims to abstract the essentials of problems and formulate them mathematically and in symbolic form so as to facilitate their analysis and solution. The course is a firm continuation of Math110 with important strongly interrelated topics that furnish robust basis for the other materials in computer science.

<u>The 1st topic</u> :Is The Definite Integration: Introduction & Basic Concepts and Properties. Theorems Facilitating Evaluation of Definite Integrals, Improper Integrals of First And Second Kinds, Case Study: Special Functions Defined As Definite Integrals. Applications of definite integration: Using Cartesian, Parametric, and Polar coordinates in: Area between two curves, Length of plan curves.

<u>The 2nd topic</u> :Is The Partial Differentiation: Basic Concepts: of Functions of several variables, Partial derivatives of order one and higher orders, Chain rule for one parameter and more. Applications: Rates, Exact differential expression, Del operator: Gradient & Divergence & Curl.

<u>The 3rd topic</u> :Is The Analytic Geometry: Two Dimensions: The different forms of equations of straight line, The conic sections: equations and geometric properties. Three Dimensions: The Cartesian, Cylindrical, and Spherical Coordinates and their interrelations. The Directional Cosines and Ratios. The Plane, The Straight Line, The Quadric Surfaces.

<u>The 4th topic</u> :Is The Multiple Integral and Vector Calculus: Double Integral: The Cartesian coordinates, Change of order, Polar coordinates. Line Integral: Opened/Closed paths in different coordinate systems. Green's Theorem, Path independence.

<u>The 5th topic</u> :Is The sequences and Infinite Series: Definition: Sequence, Series, Convergence, Divergence. Tests for Convergence And Divergence For Positive Series: Nth term test, Polynomial test, Comparison test, Nth root test, Ratio test, Integral test. Alternating Series: Leibnitz theorem for Absolute and conditional convergence. Power Series: Formation, Interval of convergence.

2. Course Main Objective:

- 1. Use the manipulative and analytical skills to solve word problems.
- 2. The ability to select and apply appropriate mathematical processes.
- 3. Constructs algebraic tools that create well developed accurate solutions.
- 4. Verifies independent critical thinking and problem solving skills.

3. Course Learning Outcomes

	CLOs	
1	Knowledge:	
1.1	Understand the concept of integration and its application to physical problems such as evaluation of areas, volumes of revolution, force, and work; fundamental formulas and various techniques of integration applied to both	K1

	CLOs	
	single variable and multi- variable functions; tracing of functions of two variables.	
1.2	Ability to think analytically and critically	K2
1.3	Ability to understand and analyze the mathematical problems	K3
2	Skills :	
2.1	Ability to think analytically and critically	S1
2.2	Ability to understand and analyze the mathematical problems	S2
2.3	Sketch 3-dimensional regions bounded by several surfaces; and evaluate volumes of 3-dimensional regions bounded by two or more surfaces through the use of the double integral.	S3
3	Competence:	
3.1	Determine the indicated sum of the elements in special sequences and series, and recognize the convergence/divergence of general sequence and series.	C1
3.2	Students can actively and critically participate in class activities;	C2
3.3	Students can act responsibly and ethically in conducting their work;	C3

C. Course Content

No	List of Topics	Contact Hours		
1	ntegral Calculus: The definite integration: Introduction & Basic Concepts and Properties of Definite Integrals, Theorems Facilitating Evaluation of Definite Integrals, Improper Integrals of First And Second Kinds, Case Study: Special Functions Defined As Definite Integrals. Applications of definite integration: Using Cartesian, Parametric, and Polar coordinates in: Area between two curves, Length of plan curves	9		
2	<u>Partial Differentiation</u> : Basic Concepts: of Functions of several variables, Partial derivatives of order one and higher orders, Chain rule for one parameter and more. Applications: Rates, Exact differential expression, Del operator: Gradient & Divergence & Curl.	6		
3	Analytic Geometry: Two Dimensions: The different forms of equations of straight line, The conic sections: equations and geometric properties. Applications: Rates, Exact differential expression, Del operator: Gradient & Divergence & Curl. Three Dimensions: The Cartesian, Cylindrical, and Spherical Coordinates and their interrelations. The Directional Cosines and Ratios. The Plane, The Straight Line, The Quadric Surfaces.	9		
4	<u>Multiple Integral And Vector Calculus:</u> Double Integral: The Cartesian coordinates, Change of order, Polar coordinates. Line Integral: Opened/Closed paths in different coordinate systems. Green's Theorem, Path independence.	9		
5	 <u>Sequences And Infinite Series</u>: Definition: Sequence, Series, Convergence, Divergence. Tests for Convergence And Divergence For Positive Series: Nth term test, Polynomial test, Comparison test, Nth root test, Ratio test, Integral test. Alternating Series: Leibnitz theorem for Absolute and conditional convergence. Power Series: Formation, Interval of convergence 	16		
Total				

5

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

10	Code			Teaching		Assessment
	couc	Course Learning Outcomes		Strategies		Methods
	1.0	Knowledge		0		
	1.1	Understand the structure of	Lect	ures		Written Exam
		compilers	dem	onstrations		Homework
	1.2	Understand the basic techniques	Case	e studies		assignments
		used in compiler construction such	Indi	vidual		Class Activities
		as lexical analysis, top-down,	pres	entations		Quizzes
		bottom-up parsing, context-				
		sensitive analysis, and intermediate				
		code generation.				
	1.3	Understand the basic data				
		structures used in compiler				
		construction such as abstract syntax				
		trees, symbol tables, three-address				
		code, and stack machines.				
	1.4	Explain the core issues of Compiler				
		design.				
	2.0	Skills				
	2.1	Ability to think analytically and				Written Exam
<i>ــــ</i>		critically;		ectures		Homework
2.2		Ability to understand and analyze	Clas	s discussion		assignments
	 	the mathematical problems				Class Activities
	•••					Quizzes
	3.0	Competence				
	3.1	Students can complete assignments				
		in due time;				
		Students can actively and critically	Peer	Peer and groun		Written Exam
3.2		participate in class	Discussion			Homework
		activities;	Lect			assignments
Students can communicate, negotiate and evaluate their strengths and weaknesses as team members.				s discussion		Class Activities
		6				Quizzes
		e				
. A	ssessment '	Fasks for Students			-	
#		Assessment task*		Week Due		Percentage of Total Assessment Score
1	First writter	n mid-term exam		6	1	5%
2				12	1	5%

1	First written mid-term exam	6	15%
2	Second written mid-term exam	12	15%
3	Presentation, class activities, and group discussion	Every	10%
5		week	
1	Homework assignments	After each	10%
-		chapter	
5	Other Implementation	Every two weeks	10%
3		weeks	
6	Final written exam	16	40%

#	# Assessment task*		Percentage of Total Assessment Score
7	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice : Office hours: Sun: 8-10, Mon. 10-12 Email: m.badawi@mu.edu.sa

F. Learning Resources and Facilities

1.Learning Resources

Required TextbooksCarlos Polanco, Advanced Calculus: Fundamentals of Mathemat Bentham Science Publishers, 2019	
Essential References MaterialsEssential Calculus Skills Practice Workbook with Full So Paperback, 2018Electronic Materialshttp://mathcity.org/bsc/notes_of_calculus_with_analytic_geome http://ilmikitabkhana.com	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom and Labs as that available at college of science at AzZulfi are enough.
Technology Resources (AV, data show, Smart Board, software, etc.)	Smart Board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	N/A

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Questionnaires (course evaluation) achieved by the students and it is electronically organized by the university.	Students	Indirect
Student-faculty management meetings.	Program Leaders	Direct
Discussion within the staff members teaching the course	Peer Reviewer	Direct

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Departmental internal review of the course.	Peer Reviewer	Direct
Reviewing the final exam questions and a sample of the answers of the students by others.	Peer Reviewer	Direct
Visiting the other institutions that introduce the same course one time per semester.	Faculty	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Dr. Maria Altaib
Reference No.	
Date	19/09/2019