

Course Specifications

Course Title:	Data Science 2
Course Code:	AI 422
Program:	Information and Computer Science
Department:	Computer Science and Information
College:	Science at Al-Zulfi
Institution:	Majmaah

Table of Contents

A. Course Identification	3	
6. Mode of Instruction (mark all that apply)		3
B. Course Objectives and Learning Outcomes	4	
1. Course Description		4
2. Course Main Objective		4
3. Course Learning Outcomes		4
C. Course Content		
D. Teaching and Assessment	6	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessm Methods		6
2. Assessment Tasks for Students		6
E. Student Academic Counseling and Support	7	
F. Learning Resources and Facilities	7	
1.Learning Resources		7
2. Facilities Required		7
G. Course Quality Evaluation	8	
H Specification Approval Data	8	

A. Course Identification

1.	Credit hours: 3			
2.	Course type			
a.	University College Department Others			
b.	Required Elective			
3.	Level/year at which this course is offered: Level 9			
4.	Pre-requisites for this course (if any): Data Science (1)- AI 324			
5.	5. Co-requisites for this course (if any): Nil			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	44	80 %
2	Blended	3	5 %
3	E-learning	3	5 %
4	Correspondence	3	5 %
5	Other	3	5 %

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours	
Contac	Contact Hours		
1	Lecture	30	
2	Laboratory/Studio	20	
3	Tutorial	5	
4	Others (specify)	5	
	Total	60	
Other	Other Learning Hours*		
1	Study	10	
2	Assignments	20	
3	Library	10	
4	Projects/Research Essays/Theses	20	
5	Others (specify)	0	
	Total	60	

^{*} The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

- Mathematical Models : Linear models , Non-Linear models , Descriptive Models , Stochastic and Deterministic Models •
- Linear Algebra and Regression: Visualizing Matrix Operation, Factoring Matrices, Eigenvalues and Eigenvectors and Singular Value Decomposition, Principal Components Analysis, Stochastic Gradient Descent, Classification and Logistic Regression, Issues in Logistic Classification.
- Classification and Clustering: Decision Tree Classifiers, Nearest Neighbor Classification, k-Nearest Neighbors and Induced Networks, k-means Clustering, Agglomerative Clustering.
- Machine Learning: Naive Bayes and Support Vector Machines, Supervised and Unsupervised Learning, Deep Learning.
- Big Data: Big Data as Bad Data, Algorithmic for Big Data, Filtering and Sampling, Data Parallelism

2. Course Main Objective

Student will:

- 1. have the ability to demonstrate advanced independent critical enquiry, analysis and reflection;
- 2. have a strong sense of intellectual integrity and the ethics of scholarship;
- 3. have in-depth knowledge of modern statistical methodology and computing
- 4. reach a high level of achievement in writing, research or project activities, problem-solving and communication;
- 5. be critical and creative thinkers, with an aptitude for continued self-directed learning;
- 6. be able to examine critically, synthesis and evaluate knowledge across a broad range of disciplines;
- 7. have a set of flexible and transferable skills for different types of employment; and
- 8. be able to initiate and implement constructive change in their communities, including professions and workplaces

3. Course Learning Outcomes

Upon successful completion, students will have the knowledge and skills to:

	CLOs	Aligne d-PLOs
1	Knowledge:	
1.1	Demonstrate expertise in machine learning methods and strategies for advanced data mining, expertise in database systems, and expertise in computational statistics.	
1.2	using public and private data sources.	
1.3		
1.4	Have a sound knowledge of modern statistical methodology and computing that will equip them for a career in data science and enable their careers to develop as data science evolves.	

	CLOs	Aligne d-PLOs	
2	Skills:		
2.1	Distinguish between different kinds of data models and identify challenges related to big data.	S3-AI	
2.2	2.2 The ability to apply skills to primary research in data science and disciplines relevant to data science applications using Python programming.		
2.3			
3	Competence: الكفاءات		
3.1	Execute statistical analysis with professional software(Python).		
3.2	Applying proficiency kinds of data models and identify challenges related to big data using Python.	C3-AI	
3.3	Applying supervised and unsupervised learning methods on dataset using Python.		

C. Course Content

No	List of Topics	Contact Hours
1	- Mathematical Models: Linear vs. Non-Linear Models, Blackbox vs. Descriptive Models, First-Principle vs. Data-Driven Models, Stochastic vs. Deterministic Models, Baseline Models, Evaluating Models	12
2	- Linear Algebra: Visualizing Matrix Operation , Factoring Matrices , Eigenvalues and Eigenvectors , Eigenvalue Decomposition , Singular Value Decomposition (SVD) , Principal Components Analysis (PCA) .	
3	 Linear and Logistic Regression: Linear Regression, Better Regression Models, Regression as Parameter Fitting, Gradient Descent Search, Stochastic Gradient Descent, Classification and Logistic Regression, Issues in Logistic Classification 	8
4	- Distance and Network Methods: Measuring Distances Metrics, Nearest Neighbor Classification, <i>k</i> -Nearest Neighbors, Locality Sensitive Hashing, G, Weighted Graphs and Induced Networks	8
5	- Clustering: <i>k</i> -means Clustering , Agglomerative Clustering , Comparing Clustering's , Similarity Graphs and Cut-Based Clustering and Cluster Bombing	8
6	- Machine Learning: Naive Bayes, Decision Tree Classifiers, Boosting and Ensemble Learning and Support Vector Machines, Supervised and Unsupervised Learning, Deep Learning	8
7	 Big Data: Big Data as Bad Data, Algorithmic for Big Data, Filtering and Sampling, Data Parallelism, Cloud Computing Services, Map-Reduce Programming, Societal and Ethical Implications 	8
	Total	60

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods Live Learning: Lecture, PowerPoint slides and discussion

Code	Course Learning Outcomes	Teaching	Assessment
		Strategies	Methods
1.0	Knowledge		TT 1
	Demonstrate expertise in machine learning methods and strategies for advanced data		- Homework tasks
1.1	mining, expertise in database systems, and		- Quiz
	expertise in computational statistics.	■ Direct Teaching:	- Quz - Midterms
	Integrate and apply this expertise to produce	Lectures,	- Final Exam
1.2	solutions for real-world problems using	PowerPoint slides	I IIMI L/MIII
1.2	public and private data sources.	and discussion.	
	Have the ability to demonstrate advanced		
1.3	independent critical enquiry, analysis and	 Aimed Teaching 	
	reflection;	Discovery and	E leamine
	Have a sound knowledge of modern	Oral Questions.	E-learningInternet search
	statistical methodology and computing that		- Oral Exam
1.4	will equip them for a career in data science		- Olai Laili
	and enable their careers to develop as data		
	science evolves.		
2.0	Skills	Т	
0.1	Distinguish between different kinds of data		
2.1	models and identify challenges related to	Indirect	
	big data.	Teaching:	- Lab Exercises
	The ability to apply skills to primary research in data science and disciplines	Brainstorming -	- Lab Exam
2.2	relevant to data science applications using	Free Discovery –	- Oral Exam
	Python programming.	Inquiry	- Presentations
2.2	Apply skills in the evaluation and synthesis		
2.3	of information from big data		
3.0	Competence		
3.1	Execute statistical analysis with		Introduce group
3.1	professional software(Python).	Course Project	project and case
	Applying proficiency kinds of data models	(Work group)	study approaches
3.2	and identity challenges related to big data	critical thinking and	to enable students
	using Python.	ability to seek	to have an
2.2	Applying supervised and unsupervised	solutions.	experience in
3.3	learning methods on dataset using Python.		problem solving situations.
			situations.

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework 1	2	2%
2	QUIZ 1	3	5%
3	Homework 2	4	2%
4	QUIZ 2	5	5%
5	Midterm 1	6	10%
6	Homework 3	7	2%
7	QUIZ 3	8	5%

#	Assessment task*	Week Due	Percentage of Total Assessment Score
8	Homework 4	9	2%
9	QUIZ 4	10	5%
10	Midterm 2	11	10%
11	Lab Exam/ Project Evaluation	14	12%
12	Final Exam	16	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- Determine meeting appointments for the weak' students to solve their problems and give them academic advices.
- One office hour daily
- Dealing a workshops.
- Motivate students

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	The Data Science Design Manual, Steven S. Skiena, Springer, 2017, ISSN 1868-0941, ISBN 978-3-319-55443-3	
Essential References Materials	The Data Science Handbook, Cady Field, Wiley, 2017, ISBN-13: 978-1119092940	
Electronic Materials	https://www.kaggle.com/learn/overview_	
Other Learning Materials	Matlab toolboxes: Data mining/ Data Science / machine learning	

2. Facilities Required

· · · · · · · · · · · · · · · · · · ·		
Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom - Laboratory	
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show – Smart Board	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Matlab software – Weka – Python Programming	

G. Course Quality Evaluation

G. Course Quanty Evaluation			
Evaluation Areas/Issues	Evaluators	Evaluation Methods	
Questionnaires (course evaluation) filled by the students and acquired electronically by the University	Students	Indirect Assessment	
Students-faculty management meetings			
Midterms and Final Exam Project Evaluation	Course Coordinator Staff	Direct Assessment	
5. Departmental internal review of the course.	Reviewer Committee	Final Exam Evaluation	
6. Course Portfolio	External Reviewer	Course Evaluation	

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	