





# **Course Specifications**

| Course Title: | Finite Automata and Computability |
|---------------|-----------------------------------|
| Course Code:  | ICS 321                           |
| Program:      | Information and Computer Science  |
| Department:   | Computer Science and Information  |
| College:      | Science at Az Zulfi               |
| Institution:  | Al- Majmaah University            |



# Table of Contents

| A. Course Identification                                                                 |   |
|------------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                             | 3 |
| B. Course Objectives and Learning Outcomes4                                              |   |
| 1. Course Description                                                                    | 4 |
| 2. Course Main Objective                                                                 | 4 |
| 3. Course Learning Outcomes                                                              | 4 |
| C. Course Content                                                                        |   |
| D. Teaching and Assessment                                                               |   |
| 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods | 5 |
| 2. Assessment Tasks for Students                                                         | 6 |
| E. Student Academic Counseling and Support                                               |   |
| F. Learning Resources and Facilities                                                     |   |
| 1.Learning Resources                                                                     | 6 |
| 2. Facilities Required                                                                   | 7 |
| G. Course Quality Evaluation7                                                            |   |
| H. Specification Approval Data7                                                          |   |

## A. Course Identification

| 1. Credit hours: 3                               |
|--------------------------------------------------|
| 2. Course type                                   |
| a.UniversityCollegeDepartmentOthers              |
| b. Required Elective                             |
| 3. Level/year at which this course is offered: 6 |
| 4. Pre-requisites for this course (if any):      |
| ICS 123 – Discrete Structures                    |
|                                                  |
| 5. Co-requisites for this course (if any):       |
| NIL                                              |
|                                                  |

#### 6. Mode of Instruction (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | ✓                    | 80         |
| 2  | Blended               | ~                    | 5          |
| 3  | E-learning            | ✓                    | 5          |
| 4  | Correspondence        |                      | 5          |
| 5  | Other                 | ✓                    | 5          |

#### 7. Actual Learning Hours (based on academic semester)

| No     | Activity                        | Learning Hours |  |  |  |  |  |
|--------|---------------------------------|----------------|--|--|--|--|--|
| Contac | Contact Hours                   |                |  |  |  |  |  |
| 1      | Lecture                         | 30             |  |  |  |  |  |
| 2      | Laboratory/Studio               | 30             |  |  |  |  |  |
| 3      | Tutorial                        |                |  |  |  |  |  |
| 4      | Others (specify)                |                |  |  |  |  |  |
|        | Total                           | 60             |  |  |  |  |  |
| Other  | Other Learning Hours*           |                |  |  |  |  |  |
| 1      | Study                           | 45             |  |  |  |  |  |
| 2      | Assignments                     | 15             |  |  |  |  |  |
| 3      | Library                         | 05             |  |  |  |  |  |
| 4      | Projects/Research Essays/Theses | 10             |  |  |  |  |  |
| 5      | Others (specify)                | 00             |  |  |  |  |  |
| [      | Total                           | (60+75 = 135)  |  |  |  |  |  |

\* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

#### **B.** Course Objectives and Learning Outcomes

#### **1.** Course Description

The course introduces some fundamental concepts in automata theory and formal languages including grammar, finite automaton, regular expression, formal language, pushdown automaton, and Turing machine. Not only do they form basic models of computation, they are also the foundation of many branches of computer science, e.g. compilers, software engineering, concurrent systems, etc. The properties of these models will be studied and various rigorous techniques for analyzing and comparing them will be discussed, by using both formalism and examples.

#### 2. Course Main Objective

To introduce the theoretical foundation of computer science from the perspective of formal language.

To understand the formal grammar and its types.

To understand the Automata and formal languages.

#### **3.** Course Learning Outcomes

|     | CLOs                                                                                                                                          | Aligned<br>PLOs |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1   | Knowledge:                                                                                                                                    |                 |
| 1.1 | Describe languages using Finite Automata, Nondeterministic Finite<br>Automata, Regular Expressions, Context Free Grammars, Pushdown           | ICS-a2          |
|     | Automata, and Turing Machines.                                                                                                                |                 |
| 2   | Skills :                                                                                                                                      |                 |
| 2.1 | Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions, and between PDAs and CFGs. | b1              |
| 2.2 | Determine a language's place in the Chomsky hierarchy (regular, context-free, recursively enumerable).                                        | b1              |
| 3   | Competence:                                                                                                                                   |                 |
| 3.1 | Relate between Regular Languages, Context Free Languages,<br>Recursive Languages, and Recursive Enumerable (or Computable)<br>Languages       | b1              |
| 3.2 | Communicate effectively with others in Computer Science field.                                                                                | c3              |

## C. Course Content

| No | List of Topics                                                                                                                                                                                                                                                        | Contact<br>Hours |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| 1  | Introduction: basic concepts of Computational Models.                                                                                                                                                                                                                 | 4                |  |  |  |  |
| 2  | Languages: Strings and languages, finite specification of languages                                                                                                                                                                                                   | 4                |  |  |  |  |
| 3  | Deterministic Finite Automaton (DFA): definitions and examples,<br>design a DFA for a language, regular languages, operations of regular<br>languages like complement, union, intersection, kleen star,<br>concatenation.                                             |                  |  |  |  |  |
| 4  | Non-deterministic Finite Automata (NFA) and its deference to DFA, converting NFA to DFA.                                                                                                                                                                              | 8                |  |  |  |  |
| 5  | Regular expressions (REX), Converting REX to NFA.                                                                                                                                                                                                                     | 8                |  |  |  |  |
| 6  | 6 Proving languages non-regular, via the pumping lemma or alternative 4                                                                                                                                                                                               |                  |  |  |  |  |
| 7  | Context-free languages1. Push-down automata (PDAs)2. Relationship of PDAs and context-free grammars3. Properties of context-free languages                                                                                                                            |                  |  |  |  |  |
| 8  | Turing machines, or an equivalent formal model of universal<br>computation, Nondeterministic Turing machines, Chomsky hierarchy<br>The Church-Turing thesis, Computability, Rice's Theorem, Examples<br>of un computable functions, Implications of un computability. | 12               |  |  |  |  |
|    | Total                                                                                                                                                                                                                                                                 | 60               |  |  |  |  |

## **D.** Teaching and Assessment

#### 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                             | Teaching Strategies                                                         | Assessment Methods                                                              |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| 1.0  | Knowledge                                                                                                                                            |                                                                             |                                                                                 |  |  |  |
| 1.1  | Students will be able to demonstrate<br>knowledge of basic mathematical<br>models of computation and describe<br>how they relate to formal languages | Lectures,<br>Lab demonstrations<br>Case studies<br>Individual presentations | Written Exam<br>Homework<br>assignments<br>Class & lab<br>Activities<br>Quizzes |  |  |  |
| 2.0  | Skills                                                                                                                                               |                                                                             |                                                                                 |  |  |  |
| 2.1  | To understand that there are<br>limitations on what computers can do<br>and learn examples of unsolvable<br>problems.                                | Group discussions,<br>Lab demonstrations,<br>Brainstorming<br>Presentations | Home works and assignments                                                      |  |  |  |
| 3.0  | Competence                                                                                                                                           |                                                                             |                                                                                 |  |  |  |
| 3.1  | Students will apply design and<br>development principles in the<br>construction of software systems of<br>varying complexity                         | Group discussions,<br>Case Studies,<br>Brainstorming<br>Presentations       | Written Exam<br>Homework<br>assignments                                         |  |  |  |

| Code | Course Learning Outcomes                                                                            | <b>Teaching Strategies</b> | Assessme                       | nt Met | hods |
|------|-----------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|--------|------|
| 3.2  | Students will function effectively as a<br>member of a team in order to<br>accomplish a common goal |                            | Class<br>Activities<br>Quizzes | &      | lab  |

## 2. Assessment Tasks for Students

| # | Assessment task*                                     | Week Due            | Percentage of Total<br>Assessment Score |
|---|------------------------------------------------------|---------------------|-----------------------------------------|
| 1 | First written mid-term exam                          | 6                   | 15%                                     |
| 2 | Second written mid-term exam                         | 12                  | 15%                                     |
| 3 | Class activities, group discussions,<br>Presentation | Every week          | 5%                                      |
| 4 | Homework + Assignments                               | After Every chapter | 5%                                      |
| 5 | Final Lab Exam                                       | 15                  | 20%                                     |
| 6 | Final written exam                                   | 16                  | 40%                                     |

\*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

# E. Student Academic Counseling and Support

| Arrangements    | for   | availability | of  | faculty | and | teaching | staff | for | individual | student |
|-----------------|-------|--------------|-----|---------|-----|----------|-------|-----|------------|---------|
| consultations a | nd a  | cademic advi | ce: |         |     |          |       |     |            |         |
| Office hours:   |       | ,            |     |         |     |          |       |     |            |         |
| Email:          | ••••• | @mu          | edu | ı.sa    |     |          |       |     |            |         |

## F. Learning Resources and Facilities

#### **1.Learning Resources**

| Required Textbooks                | Introduction to the Theory of Computation, Cengage Learning, Third Edition, M. Sipser, Cengage Learning, 2013, ISBN-10: 1292061170, ISBN-13: 9781292061177                                                                                                                                                                                                                    |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Essential References<br>Materials | <ol> <li>An Introduction to the Theory of Computer Science Languages and<br/>Machines. Third Edition, Thomas A. Sudkamp, Addison Wesley,<br/>2006, ISBN-10: 1587145049 • ISBN-13: 9781587145049.</li> <li>Introduction to Automata Theory, Languages, and Computation,<br/>Third Edition, J. E. Hopcroft., R. Motwani, and J. D. Ullman,<br/>Addison Wesley, 2007.</li> </ol> |
| Electronic Materials              |                                                                                                                                                                                                                                                                                                                                                                               |
| Other Learning<br>Materials       |                                                                                                                                                                                                                                                                                                                                                                               |

#### 2. Facilities Required

| Item                                                                                                                      | Resources                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accommodation<br>(Classrooms, laboratories, demonstration<br>rooms/labs, etc.)                                            | <ol> <li>Classrooms with required digital aids and to support<br/>traditional method of teaching using blackboard.</li> <li>Classrooms with proper lighting and air conditioning<br/>system integrated with the sound System /audio system.</li> <li>Classroom with smart board interface, display screen<br/>and a computer to aid the sessions</li> </ol> |
| <b>Technology Resources</b><br>(AV, data show, Smart Board, software,<br>etc.)                                            | Smart Board with supporting software / computers<br>with updated versions of software as required to<br>understand the subject concepts with quality<br>headphones.                                                                                                                                                                                         |
| Other Resources<br>(Specify, e.g. if specific laboratory<br>equipment is required, list requirements or<br>attach a list) | NIL                                                                                                                                                                                                                                                                                                                                                         |

## G. Course Quality Evaluation

| Evaluation<br>Areas/Issues                           | Evaluators                                                                                                                            | Evaluation Methods                                                           |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Effectiveness of Teaching                            | Students<br>Classroom Observation<br>Committee<br>Professional Development<br>Unit<br>External Reviewers –<br>accreditation committee | Formal Classroom<br>Observation - Direct<br>Student Surveys - Indirect       |
| Effectiveness of Assessment                          | CurriculumandTestDevelopmentUnitCurriculumCommitteeAssessmentCommitteeExternalReviewers                                               | Faculty Feedback - indirect<br>Student Feedback – indirect<br>Course Reports |
| Extent of Achievement of<br>Course Learning Outcomes | QualityAssuranceUnitCurriculumandTestDevelopmentUnit                                                                                  | Course Reports<br>Annual Program Review                                      |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

**Evaluators** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

## H. Specification Approval Data

| Council / Committee |  |
|---------------------|--|
| Reference No.       |  |
| Date                |  |