





# **Course Specifications**

| Course Title:       | Calculus 1                     |
|---------------------|--------------------------------|
| <b>Course Code:</b> | MATH110                        |
| Program:            | Information Technology         |
| <b>Department:</b>  | Computer Science & Information |
| College:            | Science at AL-Zulfi            |
| Institution:        | Majmaah University             |

# **Table of Contents**

| A. Course Identification                                                               |   |
|----------------------------------------------------------------------------------------|---|
| 6. Mode of Instruction (mark all that apply)                                           | 3 |
| B. Course Objectives and Learning Outcomes4                                            |   |
| 1. Course Description                                                                  | 4 |
| 2. Course Main Objective                                                               | 4 |
| 3. Course Learning Outcomes                                                            | 4 |
| C. Course Content5                                                                     |   |
| D. Teaching and Assessment6                                                            |   |
| Alignment of Course Learning Outcomes with Teaching Strategies and Assessment  Methods | 6 |
| 2. Assessment Tasks for Students                                                       | 7 |
| E. Student Academic Counseling and Support7                                            |   |
| F. Learning Resources and Facilities7                                                  |   |
| 1.Learning Resources                                                                   | 7 |
| 2. Facilities Required                                                                 | 8 |
| G. Course Quality Evaluation8                                                          |   |
| H. Specification Approval Data8                                                        |   |

# A. Course Identification

| 1. Credit hours:                               |  |  |  |  |
|------------------------------------------------|--|--|--|--|
| 3                                              |  |  |  |  |
| 2. Course type                                 |  |  |  |  |
| a. University College Department × Others      |  |  |  |  |
| <b>b.</b> Required × Elective                  |  |  |  |  |
| 3. Level/year at which this course is offered: |  |  |  |  |
| 1 <sup>th</sup> level                          |  |  |  |  |
| 4. Pre-requisites for this course (if any):    |  |  |  |  |
|                                                |  |  |  |  |
| Nil                                            |  |  |  |  |
| 5. Co-requisites for this course (if any):     |  |  |  |  |
|                                                |  |  |  |  |
| Nil                                            |  |  |  |  |

**6. Mode of Instruction** (mark all that apply)

| No | Mode of Instruction   | <b>Contact Hours</b> | Percentage |
|----|-----------------------|----------------------|------------|
| 1  | Traditional classroom | 48                   | 80%        |
| 2  | Blended               | 6                    | 10%        |
| 3  | <b>E-learning</b>     | 6                    | 10%        |
| 4  | Correspondence        | -                    | -          |
| 5  | Other                 | -                    | -          |

**7. Actual Learning Hours** (based on academic semester)

| No    | Activity                        | Learning Hours |  |  |  |
|-------|---------------------------------|----------------|--|--|--|
| Conta | Contact Hours                   |                |  |  |  |
| 1     | Lecture                         | 30             |  |  |  |
| 2     | Laboratory/Studio               |                |  |  |  |
| 3     | Tutorial                        | 30             |  |  |  |
| 4     | Others (specify)                |                |  |  |  |
|       | Total                           | 60             |  |  |  |
| Other | Learning Hours*                 |                |  |  |  |
| 1     | Study                           | 30             |  |  |  |
| 2     | Assignments                     | 30             |  |  |  |
| 3     | Library                         |                |  |  |  |
| 4     | Projects/Research Essays/Theses | 10             |  |  |  |
| 5     | Others (specify)                | 30             |  |  |  |
|       | Total                           | 100            |  |  |  |

<sup>\*</sup> The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

## **B.** Course Objectives and Learning Outcomes

#### 1. Course Description:

The current course aims to provide a language for working with ideas relevant to computer science. The course is concerned with two main topics: Differential and Integral Calculus. The 1<sup>st</sup> topic is covered completely including Basic Concepts of the function as: Domain, Range, Mathematical Modeling, Composition, Boundness, Equality, Intervals of Increase and Decrease, Piecewise-definition, Symmetry and Homogeneity. Classification, Important types, Graphs and Related Properties, Algebraic Operations on the graph. The Inverse: Conditions and Tests of Existence, Principal Branches, Analytical and Graphical Determination of the inverse. Indeterminate Forms  $(0^*\infty, \infty - \infty)$ : Definitions, Concepts, Related Theorems, and Evaluations, Definitions of Continuity and Discontinuity. The Derivatives of all standard functions: Power Function, Trigonometric Functions and their Inverse, Hyperbolic Functions and their Inverse, considering: Graph, Domain, Range, Symmetry, and Periodicity. Applications of the Derivatives regarding: General derivatives, Implicit Differentiation, Parametric Differentiation and the Chain Rule, Important theorems as: Roll's, Mean Value, Maclurin's, Taylor's and L'Hopital Theorems, Geometric applications: Curve tracing, Polar Coordinates, Famous polar curves.

The 2<sup>nd</sup> topic covers all the essential requirements of integral Calculus, starting with Indefinite Standard Integration including all the Basic Concepts and Properties, Notable Remarks, Tables Of Standard Integration (All Elementary Functions), Basic Forms, Various Skills Using Algebraic Relations to obtain different forms of the solution of the same problem. Also, the student will have robust study of Techniques of Evaluation of Indefinite Non-standard Integration: Completing a perfect square, Partial Fractions, By-Parts, and Substitutions.

#### 2. Course Main Objective:

- 1. Introduces specific tools for analysis and verification and a practical framework for understanding important computing ideas.
- 2. Furnishes procedures, and processes to describe a mathematical result in everyday terms.
- 3. Describes and defines mathematical models that explain and express physical phenomenon, chemical reaction, and even commercial, social, and political relations.
- 4. Constructs algebraic tools that create well developed accurate solutions.
- 5. Verifies independent critical thinking and problem solving skills.

### 3. Course Learning Outcomes

| CLOs |                                                                           | Aligned<br>PLOs |
|------|---------------------------------------------------------------------------|-----------------|
| 1    | Knowledge:                                                                |                 |
| 1.1  | The students will explain and interpret general knowledge of Calculus     | a1              |
| 1.2  | Enable students to analyze the mathematical problems.                     | a1              |
| 1.3  | Outline the logical thinking. Analyze the problem, plan for the solution, | a1              |
|      | develop the solution(s), and justify these solution(s). Manage and        |                 |
|      | compile the effects of quantities that can never be directly evaluated.   |                 |

|     | CLOs                                                                                                                                         | Aligned<br>PLOs |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1.4 | The student should interpret how to know the basic mathematical principles using the internet.                                               | a1              |
| 1.5 | The students will explain and interpret general knowledge of Calculus                                                                        | a1              |
| 2   | Skills:                                                                                                                                      |                 |
| 2.1 | Classify, and convert relations from one domain to another to reproduce new adequate form that clearly match a solution.                     | b2              |
| 2.2 | Enable students to analyze the mathematical problems.                                                                                        | b2              |
| 2.3 |                                                                                                                                              |                 |
| 2   |                                                                                                                                              |                 |
| 3   | Competence:                                                                                                                                  |                 |
| 3.1 | Summarize procedures, processes and describe the mathematical results. Distinguish the importance of the different terms in a given relation | C1              |
| 3.2 | The student should interpret how to know the basic mathematical principles using the internet.                                               | C2              |
| 3.3 | The student should interpret how to know the basic mathematical principles using the internet.                                               | C2              |
| 3   |                                                                                                                                              |                 |

# **C.** Course Content

| No | List of Topics                                                                                                                                                                                                                                                                                                     | Contact<br>Hours |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|    | The Function  Definitions, Domain, Range, Mathematical Modeling, Composition, Boundness, Equality, Intervals of Increase and Decrease, Piecewise- defined functions, Symmetric and Homogenous Functions.                                                                                                           |                  |
| 1  | Classification, Important types, Graphs and Related Properties, Algebraic Operations on the graph. The Inverse: Conditions and Tests of Existence, Principal Branches, Analytical and Graphical Determination of the inverse.  Indeterminate Forms $(0^*\infty, \infty - \infty)$ : Definitions, Concepts, Related | 9                |
|    | Theorems, and Evaluations, Definitions of Continuity and Discontinuity.                                                                                                                                                                                                                                            |                  |
| 2  | The Derivative  Basic Concepts; Change; Average of Change and Rate of Change.  Algebraic and Geometrical meanings.                                                                                                                                                                                                 | 9                |
|    | Elementary Functions: Power Function, Trigonometric Function and their Inverse, Hyperbolic Functions and their Inverse. And regarding: Graph, Domain, Range, Symmetry, Periodicity.                                                                                                                                |                  |
| 3  | Applications of the Derivative  General derivatives: Implicit Differentiation, Parametric Differentiation and the Chain Rule.                                                                                                                                                                                      | 9                |

|   | Important theorems: Definitions and importance of: Roll's, Mean Value, Maclurin's, Taylor's and L'Hopital Theorems.                                                                                                                                                            |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | Geometric applications: Curve tracing, Polar Coordinates, Famous polar curves                                                                                                                                                                                                  |   |
| 4 | Indefinite Standard Integration Introduction & Basic Concepts and Properties. Notable Remarks. Tables Of Standard Integration (All Elementary Functions), Basic Forms, Various Skills Using Algebraic Relations to obtain different forms of the solution of the same problem. | 6 |
| 5 | <u>Techniques of Evaluation of Indefinite Standard Integration</u> :<br>Completing a perfect square, Partial Fractions, By-Parts, Substitutions.                                                                                                                               | 6 |
|   |                                                                                                                                                                                                                                                                                |   |
|   | Total                                                                                                                                                                                                                                                                          |   |

# **D.** Teaching and Assessment

# 1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                                                                                                                                                  | Teaching Strategies                                                                                         | <b>Assessment Methods</b>                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1.0  | Knowledge                                                                                                                                                                                                                                                                 |                                                                                                             |                                                                        |
| 1.1  | Recognize, indicate and discuss the rate of growth/decay of any relation. Classify, and convert relations from one domain to another to reproduce new adequate form that clearly match a solution. Summarize procedures, processes and describe the mathematical results. | Start each chapter by general idea and the benefit of it. Demonstrate the course information and principles | Written Exam<br>Homework<br>assignment<br>Class Activities<br>Quizzes. |
| 1.2  | Distinguish the importance of the different terms in a given relation                                                                                                                                                                                                     | through lectures.                                                                                           |                                                                        |
| •••  |                                                                                                                                                                                                                                                                           |                                                                                                             |                                                                        |
| 2.0  | Skills                                                                                                                                                                                                                                                                    |                                                                                                             |                                                                        |
| 2.1  | The students will explain and interpret a general knowledge of Calculus                                                                                                                                                                                                   | Encourage the student to look for some complicated                                                          | Written Exam                                                           |
| 2.2  | Enable students to analyses the mathematical problems                                                                                                                                                                                                                     | problems in the different references.                                                                       | Homework<br>assignment                                                 |
|      | Student's ability to write physical equations in a correct mathematical way.                                                                                                                                                                                              | Ask the student to attend lectures for practice solving problem.                                            | Class Activities<br>Quizzes                                            |
| 3.0  | Competence                                                                                                                                                                                                                                                                |                                                                                                             |                                                                        |
| 3.1  | The student should appraise how to Use the computer skills and                                                                                                                                                                                                            | Encourage the student to ask good                                                                           | Written Exam                                                           |

| Code  | Course Learning Outcomes                                                                                    | Teaching Strategies    | <b>Assessment Methods</b>                 |
|-------|-------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------|
|       | library.                                                                                                    | question to help solve | Homework                                  |
| 3.2   | The student should illustrate how to Search the internet and using software programs to deal with problems. |                        | assignment<br>Class Activities<br>Quizzes |
| • • • |                                                                                                             |                        |                                           |

### 2. Assessment Tasks for Students

| # | Assessment task*                                     | Week Due           | Percentage of Total<br>Assessment Score |
|---|------------------------------------------------------|--------------------|-----------------------------------------|
| 1 | First written mid-term exam                          | 6                  | 15%                                     |
| 2 | Second written mid-term exam                         | 12                 | 15%                                     |
| 3 | Presentation, class activities, and group discussion | Every week         | 10%                                     |
| 4 | Homework assignments                                 | After each chapter | 10%                                     |
| 5 | Homework + reports                                   | Every two<br>weeks | 10%                                     |
| 6 | Final written exam                                   | 16                 | 40%                                     |
| 7 | Total                                                |                    | 100%                                    |

<sup>\*</sup>Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Office hours: Sun: 8-10, Mon. 10-12

Email: m.badawi@mu.edu.sa

# F. Learning Resources and Facilities

#### 1.Learning Resources

| Tibleatining Resources            |                                                                                      |
|-----------------------------------|--------------------------------------------------------------------------------------|
| Required Textbooks                | Calculus And Its Applications, David J. Ellenbogen Addison Wesley 2007,9783319701516 |
| Essential References<br>Materials | Calculus, James Stewart, Brooks/Cole Publishing Company, 2007                        |
| Electronic Materials              |                                                                                      |
| Other Learning<br>Materials       |                                                                                      |

2. Facilities Required

| · · · · · · · · · · · · · · · · · · ·       |                                                    |  |  |  |
|---------------------------------------------|----------------------------------------------------|--|--|--|
| Item                                        | Resources                                          |  |  |  |
| Accommodation                               | Classroom and Labs as that available at college of |  |  |  |
| (Classrooms, laboratories, demonstration    | science at AzZulfi are enough.                     |  |  |  |
| rooms etc.)                                 |                                                    |  |  |  |
| Technology Resources                        | Smart Board                                        |  |  |  |
| (AV, data show, Smart Board, etc.)          |                                                    |  |  |  |
| Other Resources                             | N/A                                                |  |  |  |
| (Specify, e.g. if specific laboratory       |                                                    |  |  |  |
| equipment is required, list requirements or |                                                    |  |  |  |
| attach a list)                              |                                                    |  |  |  |

**G.** Course Quality Evaluation

| Evaluation<br>Areas/Issues      | Evaluators      | <b>Evaluation Methods</b> |
|---------------------------------|-----------------|---------------------------|
| Questionnaires (course          | Students        | Indirect                  |
| evaluation) achieved by the     |                 |                           |
| students and it is              |                 |                           |
| electronically organized by     |                 |                           |
| the university.                 |                 |                           |
| Student-faculty management      | Program Leaders | Direct                    |
| meetings.                       |                 |                           |
| Discussion within the staff     | Peer Reviewer   | Direct                    |
| members teaching the course     |                 |                           |
| Departmental internal review    | Peer Reviewer   | Direct                    |
| of the course.                  |                 |                           |
| Reviewing the final exam        | Peer Reviewer   | Direct                    |
| questions and a sample of the   |                 |                           |
| answers of the students by      |                 |                           |
| others.                         |                 |                           |
| Visiting the other institutions | Faculty         | Indirect                  |
| that introduce the same course  |                 |                           |
| one time per semester.          |                 |                           |

**Evaluation areas** (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

**Assessment Methods** (Direct, Indirect)

**H. Specification Approval Data** 

| Council / Committee | Dr. Maria Altaib |
|---------------------|------------------|
| Reference No.       |                  |
| Date                | 19/09/2019       |