

Course Specifications

Course Title:	Physics 1
Course Code:	PHY 123
Program:	Basic Science
Department:	Basic Science
College:	Computer and information Sciences
Institution:	Majmaah University

<u>II</u>

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 3(2,2,0)			
2. Course type			
a. University College × Department Others			
b. Required × Elective			
3. Level/year at which this course is offered: Level 2			
4. Pre-requisites for this course (if any): Nil			
5. Co-requisites for this course (if any): Nil			

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	40	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	20
2	Laboratory/Studio	20
3	Tutorial	
4	Others (specify)	
	Total	40

B. Course Objectives and Learning Outcomes

1. Course Description

This course is introducing the following topics: Introduction, Measurement, Estimating, The Motion in one and two dimensions. Vectors, Newton's laws of motion, Circular motion, Gravitation, work and energy, the linear momentum and collisions, Rotational motion. Static equilibrium, condition of equilibrium, elasticity, Hooke's law, Young's modulus, stress and strain, shear stress. Simple Harmonic Motion.

2. Course Main Objective

- Provides sensible preparation for areas of engineering, including computer science.
- Provides a broad foundation in basic principles of computer science and engineering.
- The program has a strong emphasis on mechanics and its application.
- Able to interpret physical problems into mathematical form.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1		
1.2		
1.3		
1.4		
2	Skills :	
2.1	CLO1-Gain knowledge of the basic concepts and principles of Physics, which is relevant to their further studies.	S5
2.2	CLO2- Student can understand the concepts and principles of mechanics through lectures and assessment tools.	S5
2.3	CLO3- Student can able to analyse the physical problem and learn to express mathematical equations.	S5
2.4	CLO4- Able to apply basic principles of Physics in solving problems in a structured process.	S5
3	Values:	
3.1		
3.2		
3.3		
3.4		

C. Course Content

No	No List of Topics		
1	Introduction, Measurement, Estimating, Vectors	4	
2	Motion in One Dimension	4	
3	Motion In Two Dimension	4	
4	Newton's laws of motion	4	
5	Circular Motion	4	
6	Gravitation	4	
7	Work and energy	4	
8	linear momentum and collisions	4	
9	Rotational motion	4	
10	Static Equilibrium and elasticity, SHM	4	
Total			

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding	•	
1.1			
1.2			
1.3			
1.4			
2.0	Skills		
2.1	CLO1-Gain knowledge of the basic concepts and principles of Physics, which is relevant to their further studies.	Classroom Teaching, Laboratory	Quiz, Mid Exam, Lab exam, Final Exam
2.2	CLO2- Student can understand the concepts and principles of mechanics through lectures and assessment tools.	Classroom Teaching	Assignment, Mid Exam, Final Exam
2.3	CLO3- Student can able to analyze the physical problem and learn to express mathematical equations.	Classroom Teaching	Assignment, Mid Exam, Final Exam
2.4	CLO4- Able to apply basic principles of Physics in solving problems in a structured process.	Classroom Teaching	Quiz, Mid Exam, Final Exam
3.0	Values		
3.1			
3.2			
3.3			
3.4			

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Assignments	During	10%
1	Assignments	the term	1070
2	Midtown	During	20%
2	2 Mildlerm	the term	2070
3	Quiz	6 th week	10%
4	LAB CONDUCTION	10 th week	20%
5	Final Exam	12 th week	40%
6	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Students can meet the faculty during advising hours or whenever the faculty is in the office. Office Hours: 4 Hours/Week

F. Learning Resources and Facilities

1.Learning Resources

	TextBook
Required Textbooks	 Physics: Principles with Applications, Global Edition, Douglas C. Giancoli, Pearson New International Edition, 2016. Physics for Scientists and Engineers with Modern Physics by Jewett and Serway, 9thEdition, Thomson Brooks/Cole 2013.
Essential References Materials	 a) Richard P. Feynman, Robert B. Leighton and Matthew Sands, the Feynman Lectures on Physics, 1st Edition (New Millennium Edition). b) Engineering Physics, Gaur and Gupta, Chand Publishers
Electronic Materials	www.engr.wisc.edu/ep/ engphys.mcmaster.ca www.engphys.ubc.ca/
Other Learning Materials	 Computer-based experiments. Professional standards (Models) Robotic application

2. Facilities Required

Item	Resources			
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom and lab are required as per the recommendation of University.			
Technology Resources (AV, data show, Smart Board, software, etc.)	Enough facilities are present (Such as projector, Video conferencing machine)			
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Enough laboratory equipment required			

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Final Exam Evaluation	Peers	Verification of Marks
Course Report Verification	Quality Coordinator	Check List

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	