

Course Specification (Bachelor)

Course Title: Physics 1

Course Code: PHY 123

Program: Basic Science

Department: Information Systems

College: Computer and information Sciences

Institution: Majmaah University

Version: 2

Last Revision Date: 9 September 2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

-					
Δ	General	ını	tormation	about the	COLLEGE.
\neg	uciiciai		IOIIIIALIOII	about the	course.

1. Course Identification

1. CC	1. Course identification					
1. C	1. Credit hours: (3(2,2,0))					
2. C	ourse type					
A.	□University	⊠ College	□Depa	rtment	□Track	□Others
В.	⊠ Required			□Electi	ive	
3. L	evel/year at wh	ich this course is	s offere	d: (Level 1	l(Trimester)	
4. C	ourse general D	escription:				
This course is designed to equip the skills and knowledge of fundamental principles of Physics to apply in computer science. This course covers the laws governing motion in one and two dimensions, static equilibrium, elasticity, and simple harmonic motion.						
5. Pre-requirements for this course (if any):Nil						
6. P	6. Pre-requirements for this course (if any):Nil					

7. Course Main Objective(s):

- 1. Gain knowledge of the basic concepts and principles of Physics, which is relevant to their further studies.
- 2. Student can understand the concepts and principles of mechanics through lectures and assessment tools
- 3. Student can be able to analyze the physical problem and learn to express mathematical equations.
- 4. Able to apply basic principles of Physics in solving problems in a structured process.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100%
2	E-learning		
	Hybrid		
3	 Traditional classroom 		
	E-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	30
3.	Field	
4.	Tutorial	
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	CLO1-Gain knowledge of the basic concepts and principles of Physics, which is relevant to their further studies.	K1	Classroom Teaching, Laboratory	Quiz, Mid Exam, Lab exam, Final Exam
1.2	CLO2- Student can understand the concepts and principles of mechanics through lectures and assessment tools	K1	Classroom Teaching,	Assignment, Mid Exam, Final Exam
2.0	Skills			
2.1	CLO3- Student can be able to analyse the physical problem and learn to express mathematical equations.	S1	Classroom Teaching,	Assignment, Mid Exam, Final Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	CLO4- Able to apply basic principles of Physics in solving problems in a structured process.	S5	Classroom Teaching,	Assignment, Quiz, Mid Exam, Final Exam
3.0	Values, autonomy, and	d responsibility		
3.1				
3.2				
•••				

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction, Measurement, Estimating errors, Vectors	4
2.	Motion in One Dimension	4
3.	Motion In Two Dimension	4
4.	Motion In Two Dimension	4
5.	Newton's laws of motion	4
6.	Circular Motion	4
7.	Gravitation	4
8.	Work and energy	4
9.	linear momentum and collisions	4
10.	Rotational motion	4
11.	Rotational Motion	4
12.	Static Equilibrium	4
13.	Elasticity	4
14.	Simple Harmonic Motion	4
15.	Revision	4
	Total	60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignments	During the term	10%
2.	Midterm	During the term	20%
3.	Quiz	6 th week	10%
4.	LAB CONDUCTION	10 th week	20%
5.	Final Exam	12 th week	40%
6.	Total		100%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 TextBook: Physics: Principles with Applications, Global Edition, Douglas C. Giancoli, Pearson New International Edition, 2016. Physics for Scientists and Engineers with Modern Physics by Jewett and Serway, 9thEdition, Thomson Brooks/Cole 2013. 	
Supportive References	a. Richard P. Feynman, Robert B. Leighton and Matthew Sands, the Feynman Lectures on Physics, 1st Edition (New Millennium Edition).b. Engineering Physics, Gaur and Gupta, Chand Publishers	
Electronic Materials	a. www.engr.wisc.edu/ep/b. engphys.mcmaster.cac. www.engphys.ubc.ca/	
Other Learning Materials	a. Computer-based experiments.b. Professional standards (Models)Robotic application	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom and lab are required as per the recommendation of university.
Technology equipment (projector, smart board, software)	Enough facilities are present (Such as projector, Video conferencing machine)
Other equipment (depending on the nature of the specialty)	Enough laboratory equipment required.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Instructor	Direct
Quality of learning resources	Instructor	Direct
The extent to which CLOs have been achieved	Students	Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval

