

Kingdom of Saudi Arabia Ministry of Higher Education College of Computer & Information Sciences Majmaah University

Course Profile

Course Name:-	PHYSICS-I
Course Code:-	PHY 104
Academic Year:-	1434-35
Semester:-	First

Course Overview

This course is introducing the following topics-Introduction to Physics and electricity; Electric fields, Coulomb's law (statement, equation and problems), Gauss' Law (statement, equation and problems), electric potential, capacitance (series and parallel) and dielectric, currents and resistance (Ohm's law), electrical energy and power, direct current circuits, Kirchhoff's rules, magnetic fields, motion of charged particle in a magnetic field, sources of the magnetic field, Faraday's law of induction (statement, equation and problems), Ampere's law, mutual inductance, alternating current circuits, the RLC series circuit(a resistor, an inductor, and a capacitor connected in series and parallel), power in an A.C. circuit, resonance in RLC services circuit.

Course Details		
Level:-	3	
Credit:-	3	
Pre-Requisites:-	None	
Co- Requisites:-	None	

Learning Outcomes of Course

After successful completion of this course, student will be able to-

- 1. Student can gain the knowledge of the basic concepts of Electricity and Magnetism
- **2.** Student can understand the concepts and principles of Electricity and Magnetism through lectures, laboratory experiments and assessment tools.
- **3.** Student can able to apply the basic principles of physics in solving problems in a structured process.
- **4.** Student can able to analyze the physical problem and can express it in a mathematical equation.
- **5.** Student gains an ability to conduct and work with standard instruments and can able to design the electrical circuits.

Course Assessment

Name of Assessment Task	Weight of Assessment	Week Due
1. Midterm Exam-1	15%	7 th week
2. Midterm Exam-2	15%	12 th week
3. Quizzes/ Assignments/ Seminar	10%	2,4,6,8,11
4. Lab	20%	15
5. Final Exam	40%	Schedule by exam
		committee

Assessment Task and Learning Outcomes Alignment

	Cours	Course Learning Outcomes				
Assessment Task Name	1	2	3	4	5	
1. Midterm Exam-1	√	√	√			
2. Midterm Exam-2				$\sqrt{}$		
3. Quizzes		√	√			
4. Assignments/Report/Seminar	√	V	√			
5. Final Exam	√	V	√	√	V	

Teaching Contact Details

Name of Course Coordinator:-	Dr.D.Baba basha
Email of Course Coordinator:-	b.dudekula@mu.edu.sa
Lab/Tutorial Instructor:-	Dr.D.Baba basha
Email of Lab/Tutorial Instructor:-	b.dudekula@mu.edu.sa
Office Hours:-	Wed 10 AM to 12 Noon
Office Number:-	024-1-18-1
Office Phone Number:-	5386

Details of Required Text Book

Book Name	Authors Name	Publisher	Year	Edition
Physics for Scientists and engineers	Raymond A. Serway, John W. Jewett		2013	9 th Edition

Details of Required Reference Books

Book Name	Authors Name	Publisher	Year	Edition
1. Fundamental of Physics	HALLIDAY / RESNICK / JEARL WALKER	John Wiley & Sons, Inc.	2011	9 th Edition
2. Engineering physics	R K GAUR S L GUPTA	DHANPAT RAI PUBLICATIO NS	2001	8th Revised Edition
3. Physics for Scientists &Engineers", Vol. 1	Douglas C. Giancoli	Addison- Wesley	2007	4 th Edition

IT Resources

The following IT Resources will require to access-

- 1. Majma'ah University Faculty Email
- 2. Faculty Web Page
- 3. Projector
- 4. http://science.pppst.com/physics.html
- **5.** http://physwiki.ucdavis.edu
- **6.** http://www.physics.org
- 7. http://www.physicsclassroom.com/
- 8. http://www.phys4arab.net/

Course Schedule

Course Topics	Book's Chapter	Event Name	Week Due
Introduction to Electricity and magnetism	Electric fields	Brain storming and review of previous knowledge.	Week-1
Electric flux, Gauss's Law (statement, equation and problems)	Gauss's Law		Week-2
Electric Potential and potential	Electric	Quiz 1	Week-3

difference, potential difference in a uniform Electric field	potential		
Solving problems	Electric Potential Applications		Week-4
Definition of Capacitance, calculation of capacitance, combinations of capacitors, capacitors with dielectrics	Capacitance and dielectrics	Assignment 1	Week-5
		Written Assessment Due Sunday (16 March 2014) 10:00 PM	Week-6
Electric current, Resistance, ohms law, Electric power and electrical energy	Currents and resistance	First Midterm Test	Week-7
Electromotive force, Resistors in series and parallel, Kirchhoff's Rules	Direct current circuits		Week-8
Magnetic fields and forces, Motion of charged particle in a magnetic field,	Magnetic fields		Week-9
The Biot-Savart Law, Amperes Law	Sources of magnetic field	Quiz2	Week-10
		Written Assessment Due Sunday (20 April 2014) 10:00 AM	Week-11
Faraday's Law of induction(statement, equation and problems),	Faraday's law	Second Midterm Test	Week-12
Self-induction and inductance,RL circuits, Mutual inductance, RLC Circuit	Inductance	Assignment 2	Week-13
The RLC series circuit (a resistor, an inductor, and a capacitor connected in series and parallel), power in an A.C. circuit, resonance in RLC services circuit.	Alternating current circuits		Week-14
Review of the syllabus			Week-15
Final Examination			Exam Week

Referencing Style

The American Psychological Association (APA) referencing style must be use for all submissions of this course.

Course Assessment Task

Assessment Name:-	Midterm Exam-1
Description of Task Assessment:-	1. This assignment is aligned to learning
	outcomes 1, 2, 3 and 5. In that regard, the
	assignment contains questions that assess: The
	student knowledge on the basic concepts and
	principles of physics in particular electricity
	and Magnetism.
	2. Students should be familiar with Coulomb's law
	and they should be able to calculate forces
	between static charges
	3. They should understand the concept of the
	electric field and they should be able to
	calculate electric fields from given charge
	distributions.
	4. Students should understand the physical
	information contained in Gauss's law and they
	should be able to apply this law to the
	calculation of field distributions in systems
	with specified symmetry.
	5. They should be able to calculate the work done
	when a charge is moved in an electric field and
	connection that this has with electrostatic
	potential.
	6. Students should be able to find the electric field
	for a system when the electrostatic potential is
	specified.
	7. Students should be familiar with the concept of
	a capacitor and its capacitance.
	8. They should understand the idea of regarding
	an electric field as containing energy. They
	should be able to calculate that electrical
	energy and power of electrical circuits in
	simple cases
	The complete details of the assessment task are

	provided in Module.
Task Assessment Due Week/Date:-	7 th Week
Return Week/Date to Students:-	8 th Week
Weight of Task Assessment:-	15%
List of Learning Outcomes Assessed:-	1. Gain the knowledge of the basic concepts of
	Electricity and Magnetism
	2. Understand the concepts and principles of
	Electricity and Magnetism through lectures,
	laboratory experiments and assessment tools.
	3. Apply the basic principles of physics in solving
	problems in a structured process.
	5. Gains an ability to conduct and work with standard instruments and can able to design the electrical circuits.

Assessment Name:-	Midterm Exam-2		
Description of Task Assessment:-	1. This assignment is aligned to learning		
	outcomes 1, 2, 3, 4 and 5. In that regard, the		
	assignment contains questions that assess: The		
	student knowledge on the basic concepts and		
	principles of physics in particular electricity		
	and Magnetism.		
	2. Students should be familiar with the definition		
	of electric current and electric current density.		
	3. They should understand the physical origin of		
	the electrical conductivity of metals and the		
	collision model for Ohm's law.		
	4. They should be able to relate resistivity to		
	power dissipation.		
	5. Students should understand the physical origin		
	of Kirchhoff's two circuit laws and be able to		
	use them in solving circuit network problems		
	6. Students should be familiar with the Biot-		
	Savart law and be able to calculate the		
	magnetic field and magnetic forces in flowing		
	currents.		
	7. They should understand the concept of the		

	magnetic field and be able to calculate this from given current distributions. 8. Students should be familiar with the Lorentz force formula and the should be able to use it in calculating the force on a charged particle in an electric and magnetic fields. 9. Students should understand how Ampere's law arises as a consequence of the Biot-savart law. 10. Students should know about the divergence and the curl of the magnetic field. 11. Students should be familiar with the static properties of electric and magnetic fields. 12. They should understand Faraday's law of electromagnetic induction and how it relates to the curl of the electric field. 13. They should be able to design Resonance Circuits The complete details of the assessment task are provided in Module.			
Task Assessment Due Week/Date:-	12 th Week			
Return Week/Date to Students:-	13 th Week			
Weight of Task Assessment:-	15%			
List of Learning Outcomes Assessed:-	 Gain the knowledge of the basic concepts of Electricity and Magnetism Understand the concepts and principles of Electricity and Magnetism through lectures, laboratory experiments and assessment tools. Apply the basic principles of physics in solving problems in a structured process. Analyze the physical problem and can express it in a mathematical equation. Student gains an ability to conduct and work with standard instruments and can able to design the electrical resonance circuits. 			

Assessment Name:-	Assignment /Quiz			
Description of Task Assessment:-	Quiz will be written Exam and Assignment will be open book exam			
Task Assessment Due Week/Date:-	2,4,6,8,11			
Return Week/Date to Students:-	Next Day			
Weight of Task Assessment:-	10%			
List of Learning Outcomes Assessed:-	1. Gain the knowledge of the basic concepts of			
	Electricity and Magnetism			
	2. Understand the concepts and principles of			
	Electricity and Magnetism through lectures,			
	laboratory experiments and assessment tools.			
	3. Apply the basic principles of physics in solving			
	problems in a structured process.			

Assessment Name:-	Final Exam			
Weight of Task Assessment:-	40%			
Duration:-	3 hrs			
Warning:-	Nil			
List of Learning Outcomes Assessed:-	1.Student can gain the knowledge of the basic			
	concepts of Electricity and Magnetism			
	2.Student can understand the concepts and			
	principles of Electricity and Magnetism through			
	lectures, laboratory experiments and assessment			
	tools.			
	3. Student can able to apply the basic principles of			
	physics in solving problems in a structured			
	process.			
	4. Student can able to analyze the physical problem			
	and can express it in a mathematical equation.			
	5. Student gains an ability to conduct and work			
	with standard instruments and can able to design			
	the A.C & D.C electrical circuits.			