

Course Specifications

Institution: College of Science at Az Zulfi

Academic Department : Computer Science and Information Programme : Computer Science and Information

Course : Digital Image Processing

Course Coordinator : Dr. Wael Khedr

Programme Coordinator: Ass. Prof. Dr. Yosry Azzam
Course Specification Approved Date: 22/12/1435 H

A. Course Identification and General Information

1 - Course title: Digital Image Pro	ocessing	Course Code	e: CSI 414	
2. Credit hours: (3)(2 Lec. + 2 Lab)				
3 - Program(s) in which the cours	se is offer	red: Compuinforma	ter science and ation	
4 – Course Language: English				
5 - Name of faculty member resp	onsible f	or the course:	Dr. Wael Khed	r
6 - Level/year at which this cours	se is offer	$red: : \mathbf{E}$	lective(7 th -10 th)le	evels
7 - Pre-requisites for this course ((if any):	Linear Algebr	a & Differential	
Equations (Math310).				
8 - Co-requisites for this course (if any):			
•				
9 - Location if not on main camp	us:			
()				
10 - Mode of Instruction (mark all	ll that app	ply)		
A - Traditional classroom	$\sqrt{}$ W	hat percentage?	80 %	
B - Blended (traditional and online)	$\sqrt{}$ W	hat percentage?	10 %	
D - e-learning	$\sqrt{}$ W	That percentage?	10 %	
E - Correspondence	W	That percentage?	%	
F - Other	W	That percentage?	%	
Comments:				

B Objectives

What is the main purpose for this course?

The purpose of image processing is divided into 5 groups. They are:

- 1. Visualization Observe the objects that are not visible.
- 2. Image sharpening and restoration To create a better image.
- 3. Image retrieval Seek for the image of interest.
- 4. Measurement of pattern Measures various objects in an image.
- 5. Image Recognition Distinguish the objects in an image

Briefly describe any plans for developing and improving the course that are being implemented :

- 1. Using group discussions through the internet with course attending students.
- 2. Updating the materials of the course to cover the new topics of the field.
- 3. Increasing the ability of the students to implement Matlab programming in image processing that are presented in the course.

C. Course Description 1. Topics to be Covered

List of Topics		Contact Hours
 Introduction And Digital Image Fundamentals Image Sampling and Quantization, Some basic relationships like Neighbors, Connectivity, Distance Measures between pixels Translation, Scaling, Rotation and Perspective Projection of image 	3	12
 Digital image Representation Image Reading Image Displaying Writing Images using MATLAB, Data Classes, and Image Types using MATLAB 	2	8
 3. Image Enhancement in the Spatial Domain Some basic Gray Level Transformations Histogram Processing Smoothening and Sharpening Spatial Filters, and Intensity Transformation Function 	2	8
 4. Image Enhancement in the Frequency Domain: Introduction to Fourier Transform and the frequency Domain Computing and Visualizing the 2D DFT (MATLAB Smoothing Frequency Domain Filters Sharpening Frequency Domain Filters Homomorphic Filtering 	3	12
 5. Image Restoration A model of Image Degradation / Restoration Process Noise Models Restoration in the presence of Noise Only Spatial Filtering Periodic Noise Reduction by Frequency Domain Filtering 	2	8
 6. Image Compression Coding Interpixel and Psychovisual Redundancy Image Compression models Compression standards 	2	8
7. Graduate Project In Digital Image Processing by MatLab	1	4

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	30			30		60
Credit	30			15		45

3. Additional private study/learning hours expected for students per week.

5

Total Hours = 60+75=135 hour s

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

		Course	Course
	NQF Learning Domains And Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Have a clear understanding of the principals the Digital Image Processing terminology used to describe features of images.	Lectures Lab demonstrations	Written Exam Homework assignments Lab assignments Class Activities Quizzes
1.2	Have a good understanding of the mathematical foundations for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing, compression and analysis.	Case studies Individual presentations	
1.3	•		
1.4	Learn and understand the Image Enhancement in the Spatial Domain and Frequency Domain		
2.0	Cognitive Skills		
2.1	Be able to use different digital image processing algorithms.	Lectures	Written Exam

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods		
2.2	Be able to design, code and test digital image processing applications using MATLAB language.	Lab demonstrations	Homework assignments		
2.3	Be able to use the documentation for, and make use of, MATLAB library and MATLAB Digital Image Processing Toolbox (IPT).	Case studies Individual presentations	Lab assignments Class		
2.4	Be able to write programs using Matlab language for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression.	Brainstorming	Activities Quizzes		
2.5					
3.0	Interpersonal Skills & Responsibility				
3.1	Analyze a wide range of problems and provide solutions related to the design of image processing systems through suitable algorithms, structures, diagrams, and other appropriate methods.	Small group discussion Whole group	Written Exam Homework assignments Lab		
3.2	Be able to solve image problems using Matlab Toobox.	discussion Brainstorming Presentation	assignments Class Activities Quizzes		
4.0	Communication, Information Technology, Numeri	cal			
4.1	Be able to use the documentation for, and make use of, MATLAB library and MATLAB Digital Image Processing Toolbox (IPT).	Small group discussion Whole group	Written Exam Homework		
4.2		discussion Brainstorming Presentation	Lab assignments Class Activities Quizzes		
5.0	Psychomotor				
	NAN				

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	First written mid-term exam	6	15%
2	Second written mid-term exam	12	15%
3	Presentation, class activities, and group discussion	Every week	10%
4	Homework assignments	After Every chapter	10%
5	Implementation of presented concepts	Every two weeks	10%
6	Final written exam	16	40%

D. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

Office hours: Sun: 8-12, Mon. 10-12, Wed. 8-10

Office call: Sun. 12-1 and Wed 12-1

Email: w.slem@mu.edu.sa

E. Learning Resources

1. List Required Textbooks:

• Maria Petrou, Fundamental: Digital Image Processing, John Wiley and Sons, 2010.

2. List Essential References Materials:

Wilhelm Burger, Mark Burge Principles of digital image processing: fundamental techniques, Springer, 2009.

3. List Recommended Textbooks and Reference Material:

Journal of Digital Image Processing .

4. List Electronic Materials:

- http://www.engineersgarage.com/articles/image-processing-tutorial-applications
- http://www.tutorialspoint.com/dip/image_processing_introduction.htm

5. Other learning material:

• Video and presentation are available with me

F. Facilities Required

1. Accommodation

Classroom and Lab, as those that are available at college of science at AzZulfi.

- 2. Computing resources
 - Smart Board
- 3. Other resources
 - N/A

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Questionnaires (course evaluation) filled by the students and electronically organized by the university.
- Student-faculty management meetings.

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor:

- Discussion within the staff members teaching the course
- Departmental internal review of the course.

3 Processes for Improvement of Teaching:

- Periodical departmental revision of methods of teaching.
- Monitoring of teaching activities by senior faculty members.
- Training courses.

4. Processes for Verifying Standards of Student Achievement

• Evaluation matrix

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement:

- Course evaluation
- Exam evaluation
- Improvement plan

Course Specification Approved Department Official Meeting No (6) Date 22 / 12 / 1435 H

Course's Coordinator Department Head

Name :Dr. Wael KhedrName :Dr. Yosry AzzamSignature :Signature :......

Date: 17/12/1435 H **Date:** 22/12/1435 H

