| Module name: | General Chemistry | | | | |--|---|------------|---------------------------|----------------| | Module level, if applicable | 1 st | | | | | Code, if applicable | CHEM111 | | | | | Subtitle, if applicable | NA | | | | | Courses, if applicable | NA | | | | | Semester(s) in which the module is taught | 1 st & 2nd semester | | | | | Person responsible for the module | Ahlam mobty Almoteiry | | | | | Lecturer | Ahlam mobty Almoteiry | | | | | Language | Arabic | | | | | Relation to curriculum | Compulsory course for biology program | | | | | Type of teaching, contact hours | Total Contact hours:44 • Lecture:14 • Laboratory :30 Class size:50 students (2 –Groups) | | | | | Workload | Total-contact hours | Self-study | Discussion | Total workload | | | 44 | 25 | 13 | 82 | | Credit points | 2.2 ECTs-2KSA | | | | | Requirements according to the examination regulations | To attend more than 75% of lecture and practical study | | | | | Recommended prerequisites | none | | | | | Module objectives/intended learning outcomes | Understand and be able to explain the general principles, laws, and theories of chemistry that are discussed and presented throughout the semester Use critical thinking and logic in the solution of problems 3. Apply learned chemistry skills to new situations | | | | | 4. Demonstrate an understanding of chemistry through technological advance.5. Apply chemical principles in the laboratory setting | | | tecnnological aavancement | | | Content | List of Topics | No. of
Weeks | Cont
act
Hour
s | | |---------|---|-----------------|--------------------------|------| | | 1. Status of the study : | 3 | 9 | 20 | | | • Introduction on the status of art. | | | | | | • Study some of the terms such as pinnacles - weight molecular | | | | | | weight - the mall | | | | | | The most important units used | | | | | | A. gaseous state : | | | | | | General properties of gases | | | | | | Boyle's law (pressure - Code Size) | | | | | | Charles's Law (Law Size - temperature) | | | | | | expressed mathematically law | | | | | | • Law Ofujadro- letter of the law | | | | | | • expressed mathematically law expression of Boyle's law | | | | | | mathematically | | | | | | disclosure of negative ions in the group hydrochloric acid salts | | | | | | General equation of gases and precursors | 2 | 6 | 13.3 | | | Hard year for gases R and its units | | | | | | Applications on the general equation | | | | | | Mid-term Exam 1 | 1 | 1 | 6.6 | | | Diffraction gases Alhakiqih- | 3 | 9 | 20 | | | Diffraction caused by the negligence of the size of the particles | J | | | | | Diffraction caused by the attractive forces between molecules | | | | | | neglect | | | | | | Vanderfal equation and the real explanation for the diffraction of | | | | | | gases from ideal gas laws | | | | | | B - liquid state, The liquefaction of gases | | | | | | About the liquid state and the difference between them and the | | | | | | gaseous state | | | | | | And the forces of attraction between the types of molecules | | | | | | Evaporation and types of heat evaporation | | | | | | The vapor pressure of the liquid,Surface tension | | | | | | The effect of temperature on the vapor pressure | | | | | | Detection of negative ions in the sulfuric acid salts group | | | | | | Atom components | 2 | 6 | 13.3 | | | • to study the important terms such as Atom | 2 | U | | | | • atomic number - number mass - isotopes and examples | | | | | | • electromagnetic radiation | | | | | | • recipes rays , a wave - length of frequency - Speed | | | | | | Material and energy, • emission spectrum | | | | | | Detection of negative ions in the Group salts | | | | | | Study the structure of the atom | 2 | 6 | 13.3 | | | • scientific basis Atomic Theory | 2 | D | 15.0 | | | | 4 | 2 | 6.6 | | | Thomson's theory of the atom | 1 | 3 | 0.0 | | | Rzrford theory of the atom | | | | | | Bohr theory of the hydrogen atom | | | | | | Review (negative ion detection anonymous) | | | | | | Quantum preparation | | | | | | Forms orbits | | | | | | The distribution of the electrons and the possibility of its presence | | | | | | in orbit | | | | | | Work in practical exam | | | | | | Mid-term Exam 2 | 1 | 1 | 6.6 | | | C - solid state | 1 | 3 | 6.6 | | | About the solid state and the difference between them and the | | | | | | gaseous state and liquid • characteristics of solid material such as | | | | | | freezing Anshar etc. | | | | | | vapor pressure of solid material | | | | | | • types of crystalline solids, Pauli exclusion principle to Hond | | | | | | hase and annications by | | | | base and applications by Electronic arrangement of the elements, Basal cracks detected in | Study and examination requirements and forms of examination | 20 degrees for two Midterm exams 10 degrees for assignments, Class work and reseach 50 degrees for final theoretical Exam 20 degrees for final practical Exam | | |---|--|--| | Media employed | classroom provided with smartboard, computer, internet connection and enough seats Lab provided with the required devices, light microscopes and models for application of the practical part of the course | | | Reading list | 1-General Chemistry d . Ahmed Abdul Aziz Ays- Dr. Sulaiman Al Alkhuytr- Dr. Abdul -Aziz Wasil Khraiji House for Publishing and Distribution 2- The basis of physical chemistry Prof. Mohamed Magdy dawn and continued for publication • basis in physical chemistry Prof. Dr. Suleiman Abdul Alim Fatima Hafiz full 3- Electronic blackboard and what required such as projector and etc | | | Module name: | General Physics I | | | | |---|---|----------------|------------------|----------------| | Module level, if applicable | 1 st | | | | | Code, if applicable | PHYS 111 | | | | | Subtitle, if applicable | non | | | | | Courses, if applicable | non | | | | | Semester(s) in
which the
module is
taught | 1 st & 2nd semester | | | | | Person
responsible for
the module | Dr. Maisun Asad Makl | | | | | Lecturer | Dr. Maisun Asad Makl | | | | | Language | Arabic | | | | | Relation to curriculum | Compulsory course for b | iology progra | am | | | Type of teaching, contact hours | Total Contact hours:44 • Lecture:14 • laboratory:30 Class size:50 students (2-Groups) | | | | | Workload | Total-contact hours | Self-study | Discussion | Total workload | | | 44 | 20 | 14 | 83 | | Credit points | 2.8 ECTs-2 KSA | | | | | Requirements according to the examination regulations | To attend more than 75 | % of lecture o | and practical st | tudy | | Recommende
d prerequisites | non | | | | ## Module objectives/inte nded learning outcomes Define the most basic concepts in classical physics Give a correct scientific description of object motion and wave motion Differentiate between terms in classical physics Verify the validity of the theories related to the subject matter by a correct logical mathematical induction to take the responsibility of her self-study and to communicate effectively among a group. Master the use of internet in collecting helpful information to explain natural phenomena Name the laboratorial tools and devices correctly and use them gently and carefully to keep them in a good condition. Draw the curve that represents the experimental results accurately and use it to compare the practical results to the theories correctly. | Content | List of Topics | No. of
Weeks | Contact
Hours | % | |--------------------------|--|-----------------|------------------|----------| | | 1.Rectilinear Motion Dynamics (Newton's Laws of Motion) | 2 | 7 | 13.33 | | | 2. General Guidelines for
Laboratory Conduct | | | | | | 3. Charts and Calculator Usage | | | | | | 4. Work and Energy | 3 | 9 | 20 | | | 5. Calipers Experiment | | | | | | 6. Micrometer Experiment | | | | | | 7. Spherometer Experiment | | | | | | Midterm Exam1+Feedback | 1 | 2 | 6.6 | | | 9- Elasticity and Simple
Harmonic Motion | 3 | 9 | 20 | | | 10. Simple Pendulum Applications | | | | | | 11. Simple Pendulum Experiment | | | | | | 12. Hooke's Law and Spring
Constant Calculation | | | | | | Midterm Exam2+Feedback | 1 | 2 | 6.6 | | | 14- Wave Motion | 4 | 12 | 26.6 | | | 15. Wave Motion Applications | | | | | | 16. Spring Constant Calculation from the Wave Motion of the Mass | | | | | | 17- Sound Waves | 1 | 3 | 6.6 | | | 18. Speed of Sound
Measurement | | | | | | 19. Revision | | | | | | 20. Practical Examination | | | | | Study and | 20 degrees for two Midterm exams | | | | | examination requirements | 10 degrees for assignments, Class wo | rk and reseach | | | | and forms of | 50 degrees for final theoretical Exam | | | | | examination | 20 degrees for final practical Exam | | | | | Media
employed | classroom provided with smartboard , computer , internet connection and enough seats Lab provided with the required devices , | |-------------------|--| | Reading list | • 1- Theoritical part :-Dr. KHader Moamed Abdulrahman Ahshybany- dr
.Osama Ahmed Alaky –General Physivcs for universities ((Mechanics -
mechanical properties of the material - heat) Khuraiji House for Publishing
and Distribution, Riyadh, 1424 | | | 2- Practical part: d. Marwan Ahmad Fahad, Abdul Aziz Ali Masoud,
Fundamental experimental physics: Obeikan Library, Riyadh |