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Abstract 

The effect of both the magnetic field and mass transfer on buoyancy induced flow over vertical plate embedded in a non-
Newtonian fluid saturated porous medium has been modeled and analyzed. The power-law fluid model is used to characterize the 
non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable 
surface heat flux. Numerical results for the details of the velocity, temperature and concentration profiles are presented. Excess 
surface temperature as well as concentration gradient at the wall associated with heat flux distributions, which are entered in 
tables, have been presented for different values of the power-law index n  buoyancy ration B1 , magnetic field parameter Mn  
and the exponent λ  as well as Lewis number Le . 
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1. Introduction 

The flow and heat transfer in an electrically 
conducting fluid permeated by a transverse magnetic 
field is of special interest and has many practical 
applications in manufacturing processes in industry. 
During the industrial stages, the production may need 
to be consolidated by internal heat generation. The 
heat transfer rates can be controlled using a magnetic 
field. One of the ways of studying 
magnetohydrodynamic heat transfer field is the 
electromagnetic field.  

MHD flow of non-Newtonian fluids had been 
studied by Gorla et al., 1993. El-Amin and Mansour, 
2001 studied the effects of magnetic field on 
buoyancy induced flow of non-Newtonian fluids over 
a horizontal plate embedded in a porous medium with 
variable surface temperature or with variable heat 
flux. The problem of buoyancy induced flow of non-
Newtonian fluids in a porous medium past a vertical 
plate with non-uniform surface heat flux was studied 
by Mehta and Rao, 1994. Hossain and Ahmed 1990, 
studied the combined effect of forced and free 
convection with uniform heat flux in the presence of 

a strong magnetic field. El-Amin et al., 2001 
investigated the influences of magnetic field on 
buoyancy induced flow over vertical flat plate 
embedded in a non-Newtonian fluid saturated porous 
medium. Rashad, 2008, studied influence of radiation 
on MHD free convection from vertical flat plate 
embedded in porous media with thermo phonetic 
deposition of particles. Pal and Talukdar, 2010a 
investigate buoyancy and chemical reaction effects 
on MHD mixed convection heat and mass transfer in 
a porous medium with thermal radiation and Ohmic 
heating. Abdul-Hakeem et al., 2010, studied magneto 
convective heat and mass transfer over a porous plate 
with effects of chemical reaction, radiation 
absorption and variable viscosity. Effects of thermal 
radiation and viscous dissipation on MHD viscoe-
lastic free convection past a vertical isothermal cone 
surface with chemical reaction studied by El-Kabeir 
et al., 2012.  

The problem of natural convection over a non-
isothermal body of arbitrary shape embedded in a 
porous medium was studied by Nakayama and 
Koyama, 1991. Chen and Chen, 1988, presented 
similarity solutions for free convection on non-
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Newtonian fluids over vertical surfaces in porous 
media. Mehta and Rao 1994 investigated the 
buoyancy induced flow of non-Newtonian fluids over 
a non-isothermal horizontal plate embedded in a 
porous medium. The problem of forced convection 
heat transfer on flat plate embedded in porous media 
for power-law fluids has been analyzed by Hady and 
Ibrahim, 1997. A similarity solution for free 
convection from a point heat source embedded in a 
non-Newtonian fluid saturated porous medium was 
presented by Nakayama 1993. Non-similar solutions 
for mixed convection in non-Newtonian fluids along 
horizontal surfaces in porous media were investigated 
by Gorla et al., 1997. Yang and Wang 1996, studied 
the problem of free convection heat transfer of non-
Newtonian fluids over axisymmetric and two-
dimensional bodies of arbitrary shape embedded in 
fluid saturated porous medium. A review of natural 
convective flows due to combined buoyant 
mechanisms in porous media was presented by Nield 
and Bejan, 1999. Angirasa et al., 1997, investigated 
combined heat and mass transfer by natural 
convection with opposing buoyancy effects in a fluid 
saturated porous medium. Rastogi and Poulikakos 
1995, considered non-Newtonian fluid saturated 
porous media and presented similarity solutions for 
aiding flows with concentration. El-Amin et al 2004, 
studied combined effect of magnetic field and lateral 
mass transfer on non-Darcy axisymmetric free 
convection in a power-law fluid saturated porous 
medium. Mass transfer effects on the non-Newtonian 
fluids past a vertical plate embedded in a porous 
medium with non-uniform surface heat flux 
investigated by El-Hakiem and El-Amin, 2001. 
Cheng, 2009 studied the natural convection heat and 
mass transfer from a vertical truncated cone in a 
porous medium saturated with a non-Newtonian fluid 
with variable wall temperature and concentration. 
Chamkha, et al., 2011 studied the heat and mass 
transfer by non-Darcy free convection from a vertical 
cylinder embedded in porous media with temperature 
dependent viscosity. Natural convection boundary 
layer of non-Newtonian fluid about a permeable 
vertical cone embedded in porous medium saturated 
with a nanofluid studied by El-Hakiem, et al., 2011. 
El-Hakiem, 2014 studied the heat transfer from 
moving surfaces in a micro polar fluid with internal 
heat generation. The effect of radiation and double 
dispersion on mixed convection heat and mass 
transfer in non-Darcy porous medium; is investiggate 
by El-Hakiem, 2014.  

In the present work, it is proposed to study the 
effect of magnetic field and mass transfer on the non-
Newtonian fluids past a vertical plate embedded in a 

porous medium with non-uniform surface heat flux. 
The power-law fluid model is used to charactenize 
the non-Newtonian fluid behavior. Similarity solution 
for the transformed governing equations is obtained 
with prescribed variable surface heat flux. The values 
of heat transfer coefficient and concentration gradient 
at the wall are determined. 

2. Basic Equations 

The present work was undertaken in order to 
investigate the problem of effect of magnetic field 
and mass transfer on buoyancy-induced flow over 
vertical flat plate embedded in a non-Newtonian fluid 
saturated porous medium. The x − coordinate is 
measured along the plate and y− coordinate normal 

to it. The applied magnetic field is primarily in y−
direction and varies in strength as a function in x . 
No externally generated electrical field is imposed. 
The magnetic Reynolds number of the flow is taken 
applied magnetics can be neglected. Under all these 
assumptions the governing equations for the flow and 
heat transfer are given by: 
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2
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2
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Subjected to the following boundary conditions: 
y = 0 : v = 0, ∂T

∂y
= −

q
k
, C =Cw as y→∞ :

u = 0, T = T∞, C =C∞  
(7) 

where u  and v  are the Darcian velocity components 
in the x −  and y− directions, respectively, B  is the 
applied magnetic field, k  is the effective thermal 
conductivity of the saturated porous medium, p  is 

the pressure, T  is the temperature, C  is species 
concentration, D  is the chemical molecular 
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diffusivity, K  is the modified permeability of the 
porous medium, β  is the thermal expansion 

coefficient, µ  is the dynamic viscosity, ρ  is the 
density, g  is the acceleration due to gravity and α  is 
the thermal diffusivity. The power-law fluid model is 
used to characterize the non-Newtonian fluid 
behavior. Christopher and Middleman 1965 and 
Dharmadhikari and Kale, 1985 proposed the 
following relationships for the permeability as a 
function of the power-law index n  as follows: 
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(Dharmadhikari and Kale 1985) 

where d  is the particle diameter while ε  is the 
porosity. When n <1  the model describes 
pseudoplastic behavior, whereas n >1  represents 
dilatant behavior. 

As the thermal boundary layer is thin, the 
boundary layer approximations analogous to classical 
boundary layer theory can be applied. The 
experimental and numerical studies on convective 
heat transfer in a porous medium show the thermal 
boundary layers exist adjacent to the heated or cooled 
surfaces (Nield and Bejan, 1999). The normal 
component of the seepage velocity near the boundary 
is small compared with the other component of the 
seepage velocity and the derivatives of any quantity 
in the normal direction are large compared with 
derivatives of the quantity in direction of the wall. 
Invoking the Boussinesq approximation, the pressure 
can be eliminated from Eqs. (2) and (3). Under these 
assumptions, therefore the basic governing equations 
are given by: 
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The following dimensionless variables are as 
follows: 
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L
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where, Ra  is the modified Rayleigh number defined 
by: 
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and hence the dimensionless equations are given as 
follows: 
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and the boundary conditions become 

at y = 0 : v = 0, ∂T
∂y

= −Q(x), C = x−n(2λ+1)/(2n+1)  

as y→∞ : u = 0, T = 0, C = 0.  
(19) 

where, B1 =
kβ *(Cw −C∞ )

q0Lβ
x−n(2λ+1)/(2n+1)  is the 

buoyancy ratio and Mn* = αkRaσB
2

ρgβq0L
2 , assuming that 

the surface heat flux vary according to the power-law
Q(x) = xλ . Also, for the similarity to be possible we 
choose the strength of the magnetic field in the form 

B = B0
x(1−n)(2λ+1)/(4n+2)

 as Gorla et al., 1993. However the 

defining the stream function ψ(x, y),  is introduced 
which satisfies the continuity equation (15) with 

u = ∂ψ
∂y
, v = −∂ψ

∂x
.  Proceeding with the analysis; we 

introduce the following similarity transformations: 
η = yx(λ−n)/(2n+1), ψ = x(λ+n+1)/(2n+1) f (η),
T = xn(2λ+1)/(2n+1)θ(η),         C = x

n(2λ+1)/(2n+1)γ (η)  
(20) 

Introducing expressions in Eq. (20) into Eqs. (16)-
(19), the transformed governing equations may be 
written as: 
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!f n−1
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with the boundary conditions: 
f (0) = 0, !θ (0) = −1, γ (0) =1,
!f (∞) =θ(∞) = γ (∞) = 0  (24) 

where Mn = αkRaσB0
2

ρgβq0L
2  is the magnetic field 

parameter and Le = α
D

 is the Lewis number. It is 

noteworthy that, the governing non-dimensional 
parameter Mn  may be interpreted as the ratio 
between the electromagnetic forces and the gravity 
forces calculated with the Boussinesq approximation. 
Primes in the above equations denote differentiation 
with respect to η . For practical applications, it is 
usually the velocity components are of interest. These 
are given by: 
u = x(2λ−1)/(2n+1) "f (η)   (25) 

v = −x(λ−n−1)/(2n+1) λ − n−1
2n+1

η "f + λ + n
2n+1

f
#

$%
&

'(
...  (26) 

The expression of the excess surface temperature Ts  
is given by 
Ts = x

−n(2λ+1)/(2n+1)θ(0).  (27) 
The local mass flux is given by 

jw = −D
∂C
∂y y=0

 (28) 

Therefore, Sherwood number is defined by 

Sh = jw x
D(Cw −C∞ )

= −
Ra1/2

L
x(λ+n+1)/(2n+1) #γ (0).  (29) 

 
3. Results and Discussion 

The fourth-order Range-Kutta method with 
shooting technique is used to solve the system of 
ordinary differential equations in Eq. 21-23 along 
with the boundary conditions in Eq. 24. The step size 
Δη = 0.05  is used while obtaining the numerical 
solution with ηmax =12  and five decimal accuracy as 
the criterion for convergence. Numerical 
computations are carried out for Mn=0, 1, 2, 
0.5 ≤ 𝑛 ≤ 1.5 , -2.0 ≤ 𝐵! ≤ 2.0 , 0.1 ≤ 𝐿𝑒 ≤ 10 , 
0.01≤ λ ≤ 0.5. 

Numerical results of the excess surface 
temperature and the concentration gradient at the wall 

for varying values of Mn , n , B1 , Le  and λ  are 
presented in Tables 1-4. From Table (1) it is obvious 
that, an increase in the values of n  and Le  enhances 
the excess surface temperature, so, an increases of 
magnetic field parameter Mn  enhances it, for all 
values n and Le , but, it reduces the absolute values 
of concentration gradient at the wall. Also, it clear 
that, an increases in the value of n  reduces the 
absolute values of concentration gradient at the wall 
but, it is clear that, the absolute values of 
concentration gradient at the wall increase as the 
parameter Le  increases, for all cases of the power-
law index n . 

 
Table 1. Values of 𝜃(0) and −𝛾(0) for selected values of 
Mn, n and Le with 𝐵! = 1.0 and λ = 0.3  

Mn=0.0 Mn=1.0 Mn=2.0 
𝑛 Le 𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 

0.8 0.1 
1.0 
10. 

0.82237
0.87773
1.02490 

0.30946
0.78271
2.95574 

1.15730
1.20410
1.34475 

0.28383
0.58062
2.13251 

1.37190
1.41206
1.54661 

0.27524
0.50298
1.80292 

1.0 0.1 
1.0 
10. 

0.84976
0.89766
1.02561 

0.30515
0.74269
2.71325 

1.13932
1.18227
1.31237 

0.28308
0.57168
3.06668 

1.34251
1.38006
1.50739 

0.27478
0.49755
1.76393 

1.2 0.1 
1.0 
10. 

0.86852
0.91053
1.02344 

0.30214
0.71562
2.55525 

1.12489
1.16485
1.28697 

0.28252
0.56510
2.01864 

1.31888
1.35455
1.47674 

0.27443
0.49353
1.73580 

1.5 0.1 
1.0 
10. 

0.88765
0.92285
1.01869 

0.29896
0.68809
2.39976 

1.10783
1.14444
1.25767 

0.28190
0.55796
2.96918 

1.29097
1.32456
1.44162 

0.27405
0.48916
1.70627 

 
 
Table 2. Values of 𝜃(0) and −𝛾(0) for selected values of 𝐵!, Mn,  
and Le with 𝑛 = 0.5 and λ = 0.01  

Mn=0.0 Mn=1.0 Mn=2.0 
𝐵! Le 𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 

-2.0 0.1 
1.0 
10. 

2.64513
2.59771
2.05396 

0.25755
0.33500
0.98791 

2.80251
2.75242
2.29998 

0.25636
0.32700
0.97000 

2.90550
2.86225
2.47312 

0.25563
0.31199
0.91910 

-0.5 0.1 
1.0 
10. 

1.61978
1.58476
1.45420 

0.27170
0.50700
2.07500 

1.95654
1.93588
1.82373 

0.26580
0.42600
1.59500 

2.15296
2.13241
2.04114 

0.26304
0.39280
1.38802 

0.0 0.1 
1.0 
10. 

1.31465
1.31465
1.31465 

0.28081
0.60301
2.54935 

1.71617
1.71617
1.71617 

0.27047
0.47377
1.79981 

1.94156
1.94156
1.94156 

0.26630
0.42541
1.53439 

0.5 0.1 
1.0 
10. 

1.04670
1.08647
1.96850 

0.29471
0.72411
3.05961 

1.50585
1.53495
1.62538 

0.27611
0.52457
1.99816 

1.75129
1.77507
1.85597 

0.27007
0.46029
1.67509 

2.0 0.1 
1.0 
10. 

0.54669
0.64536
0.92866 

0.38939
1.21226
4.74084 

1.05626
1.15007
1.41863 

0.29962
0.69069
2.55429 

1.31975
1.40235
1.65621 

0.28415
0.57189
2.06664 

 
 
Table 3. Values of 𝜃(0) and −𝛾(0) for selected values of 𝐵! , Mn 
and Le for the Newtonain fluid (n=1)  and λ = 0.5  

Mn=0.0 Mn=1.0 Mn=2.0 
𝐵! Le 𝜃(0) −𝛾(0) 𝜃(0)   −𝛾(0) 𝜃(0) −𝛾(0) 

-1.0 0.1 
1.0 
10. 

1.65209
1.58976
1.34979 

0.26446
0.42457
1.58574 

1.86823
1.82124
1.61140 

0.26171
0.38412
1.35859 

2.02080
1.98267
1.79282 

0.26007
0.36206
1.22299 

0.0 0.1 
1.0 
10. 

1.11081
1.11081
1.11081 

0.20331
0.56939
2.22624 

1.39774
1.39774
1.39774 

0.19296
0.45562
1.75873 

1.57400
1.57400
1.57400 

0.26685
0.43013
1.52870 

1.0 0.1 
1.0 
10. 

0.79312
0.83883
0.96371 

0.30797
0.75997
2.77455 

1.06622
1.10819
1.23655 

0.28453
0.58304
2.11124 

1.25925
1.29651
1.38296 

0.27579
0.50640
1.80151 
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Table 4. Values of 𝜃(0) and −𝛾(0) for selected values of 𝐵! , λ
and Mn with 𝐿𝑒 = 0.1  and 𝑛 = 0.8 

Mn=0.0 Mn=1.0 Mn=2.0 
𝐵! λ  𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 𝜃(0) −𝛾(0) 

2.0 0.01
0.3 
0.5 

0.70991
0.62288
0.57885 

0.34103
0.35133
0.35852 

1.06359
0.93557
0.87054 

0.29560
0.30028
0.30361 

1.29364
1.14183
1.06397 

0.28242
0.28553
0.28776 

1.0 0.01
0.3 
0.5 

0.92490
0.82237
0.76963 

0.30522
0.30947
0.31260 

1.29634
1.15730
1.08519 

0.28163
0.28383
0.28544 

1.53065
1.37190
1.28896 

0.27369
0.27524
0.27642 

0.5 0.01
0.3 
0.5 

1.08742
0.97931
0.92345 

0.29101
0.29288
0.29433 

1.45411
1.30933
1.23439 

0.19964
0.20113
0.20231 

1.68009
1.52230
1.43958 

0.26976
0.27074
0.27147 

0.0 0.01
0.3 
0.5 

1.29689
1.18951
1.13347 

0.27990
0.28018
0.28045 

0.81474
0.73614
0.69570 

0.19232
0.19267
0.19303 

1.85207
1.70048
1.62005 

0.26673
0.26673
0.26712 

-1.0 0.01
0.3 
0.5 

1.84715
1.75773
1.71185 

0.26560
0.26489
0.26457 

2.10248
1.98700
1.92741 

0.26223
0.26197
0.26187 

2.27280
2.14358
2.07619 

0.26031
0.26024
0.26015 

 

Fig. 1 and 2 illustrate the velocity fields, for 
different values of the parameters Mn , Le , B1  and 
λ . From Fig. 1, we observe that an increase in the 
magnetic field Mn  reduce the velocity maximum, 
while, an increases in Lewis number Le  enhances it. 
In Fig. 2, it is that, an increases in the buoyancy ratio 
B1  enhances the velocity maximum, while, an 
increases in the parameter λ  reduces it. 

 

 

 
Figures 3 and 4 show the temperature profiles for 

different values of the given parameters. We observe 
from Fig. 3 that, as Le  and Mn  increase the 
temperature profile increase. It is noteworthy that, the 
increases in the parameters B1  and λ  reduces the 
temperature profiles, as shown in Fig. 4.  
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Fig. 1: Variation velocity profiles for varying Mn and Le at n=0.8, B1=1.0 and λ=0.3            
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Fig. 2: Variation of velocity profiles for varying λ and B1 with n=8.8, Mn=1.0 and Le=0.1   
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Fig. 3: Variation of temperature profiles for varying Mn and Le with n=0.8, B1=1.0 and λ=0.3 
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Fig. 5 and 6 illustrate the concentration 

distributions for various values of the given 
parameters. In Fig. 5, we observe that, an increases in 
Mn  enhances the concentration, while, they decrease 
as Le  increases. From Fig. 6, it is clear that, as 
parameters B1  and λ  increase the concentration 
profiles decrease. 

 

 
 
 
 

List of Symbols 

B : applied magnetic field 
B0 : magnetic field intensity 

B1 : buoyancy ratio 

C : species concentration  
C : dimensionless concentration  
D : chemical molecular diffusivity 
d : pore diameter   
f : dimensionless stream function 
g : gravitational acceleration  

jw : local mass flux 
K : modified permeability of porous medium 
k : thermal conductivity    
L : length of the plate 
Le : Lewis number 
Mn : magnetic parameter 
n : fluid power-law index  
𝑝: pressure of the fluid 
q : surface heat flux   
Ra : local Rayleigh number        
Sh : Sherwood  

T : temperature 
T : dimensional temperature 
Ts : excess surface temperature 

u,v : velocity components 
u,v : dimensionless velocity components          

x, y : space coordinates 
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x, y : dimensionless space coordinates  
α : molecular thermal diffusivity 
β : coefficient of thermal expansion 

β * : volumetric coefficient of expansion 
γ : concentration function in similarity transformation  
σ : electrical conductivity 
ε : porosity pole 
η : dimensionless similarity variable  
λ : exponent associated with the surface heat flux 
θ : temperature function in similarity transformation              
µ : dynamic viscosity 
ρ : density of the fluid 
ψ : stream function  
Superscripts 
'         differentiation with respect to η  
Subscripts 
w : surface conditions at the wall 
∞ : conditions far away from the wall 
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